Skip to main content

Advertisement

Log in

Numerical simulation of sand transfer in wind storm using the Eulerian-Lagrangian two-phase flow model

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this paper a two-dimensional gas-solid flow model is used to investigate the sand particles carrying velocity of the Iran eastern desert area around the railway track as a case study. Reynolds-averaged Navier-Stokes (RANS) equations and Discrete Phase Method (DPM) are used to simulate the characteristic movement of sand particles in wind flow. A random sample is gathered from the sand near the railway in Iran deserts. The sample is classified based on weight and diameter according to AASHTOO T27 and sand distribution is determined. Using simulations, the carrying velocity of sand in each category in wind storm is determined. Finally, the sand distribution of the sample is imported to the model by the Rosin-Rummler dissipation model. The behavior of sand particles in storm considering wind blowing scheme of desert is studied parametrically. The results can be used for estimating the sand mitigation of a special desert and land desertification control around railway tracks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.A. Zakeri, A. Fathi, J. Transp. Res. 14, 349 (2017)

    Google Scholar 

  2. M. Hamidian Pour, A. Mofidi, M. Salighe, Iran. J. Geophys. 10, 83 (2016)

    Google Scholar 

  3. A. Tavili, Iranian Railway Technical Report Track and Technical Structure (2014)

  4. X. Zheng, Mechanics of Wind-Blown Sand Movements (Springer Science & Business Media, 2009)

  5. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941)

  6. W. Zhang, J.-H. Kang, S.-J. Lee, Geomorphology 86, 320 (2007)

    Article  ADS  Google Scholar 

  7. L. Kang, L. Guo, D. Liu, Sci. China Ser. G: Phys., Mech. Astron. 51, 986 (2008)

    Article  ADS  Google Scholar 

  8. Z. Dong, G. Qian, W. Luo, H. Wang, Sci. Cold Arid Reg. 2, 0185 (2010)

    Google Scholar 

  9. L. Kang, D. Liu, Geomorphology 115, 156 (2010)

    Article  ADS  Google Scholar 

  10. M. Carneiro, T. Pähtz, H. Herrmann, Phys. Rev. Lett. 107, 098001 (2011)

    Article  ADS  Google Scholar 

  11. M.V. Carneiro, N.A. Araújo, T. Pähtz, H.J. Herrmann, Phys. Rev. Lett. 111, 058001 (2013)

    Article  ADS  Google Scholar 

  12. T.-L. Bo, X.-J. Zheng, S.-Z. Duan, Y.-R. Liang, Eur. Phys. J. E 36, 50 (2013)

    Article  Google Scholar 

  13. N. Huang, X. Xia, D. Tong, Eur. Phys. J. E 36, 99 (2013)

    Article  Google Scholar 

  14. O. Durán, P. Claudin, B. Andreotti, Proc. Natl. Acad. Sci. U.S.A. 111, 15665 (2014)

    Article  ADS  Google Scholar 

  15. T. Pähtz, A. Omeradžić, M.V. Carneiro, N.A. Araújo, H.J. Herrmann, Geophys. Res. Lett. 42, 2063 (2015)

    Article  ADS  Google Scholar 

  16. L. Preziosi, D. Fransos, L. Bruno, Appl. Math. Lett. 45, 69 (2015)

    Article  MathSciNet  Google Scholar 

  17. G. Gorchakov, A. Karpov, V. Kopeikin, A. Sokolov, D. Buntov, Dokl. Earth Sci. 467, 314 (2016)

    Article  ADS  Google Scholar 

  18. F. Xiao, Z. Dong, L. Guo, Y. Wang, D. Li, J. Arid Land 9, 331 (2017)

    Article  Google Scholar 

  19. M. Lämmel, K. Dzikowski, K. Kroy, L. Oger, A. Valance, Phys. Rev. E 95, 022902 (2017)

    Article  ADS  Google Scholar 

  20. T. Pähtz, O. Durán, Phys. Rev. Fluids 2, 074303 (2017)

    Article  ADS  Google Scholar 

  21. T. Pähtz, O. Durán, Phys. Rev. Fluids 3, 104302 (2018)

    Article  ADS  Google Scholar 

  22. T. Pähtz, O. Durán, J. Geophys. Res.: Earth Surf. 123, 1638 (2018)

    Article  ADS  Google Scholar 

  23. W. He, N. Huang, B. Xu, W. Wang, Eur. Phys. J. E 41, 53 (2018)

    Article  ADS  Google Scholar 

  24. B. Xu, J. Zhang, N. Huang, K. Gong, Y. Liu, J. Geophys. Res.: Atmospheres 123, 6907 (2018)

    ADS  Google Scholar 

  25. T. Wang, J. Qu, Y. Ling, B. Liu, J. Xiao, Aeolian Res. 30, 32 (2018)

    Article  ADS  Google Scholar 

  26. L. Bruno, D. Fransos, A.L. Giudice, J. Wind Eng. Ind. Aerodyn. 173, 79 (2018)

    Article  Google Scholar 

  27. L. Bruno, M. Horvat, L. Raffaele, J. Wind Eng. Ind. Aerodyn. 177, 340 (2018)

    Article  Google Scholar 

  28. L. Raffaele, L. Bruno, Eng. Struct. 178, 88 (2019)

    Article  Google Scholar 

  29. V. Yakhot, S. Orszag, S. Thangam, T. Gatski, C. Speziale, Phys. Fluids A: Fluid Dyn. 4, 1510 (1992)

    Article  ADS  Google Scholar 

  30. Q. Chen, Numer. Heat Transfer, Part B: Fundamentals 28, 353 (1995)

    Article  ADS  Google Scholar 

  31. D.R. Parsons, G.F. Wiggs, I.J. Walker, R.I. Ferguson, B.G. Garvey, Environ. Modell. Softw. 19, 153 (2004)

    Article  Google Scholar 

  32. J. Santiago, F. Martin, A. Cuerva, N. Bezdenejnykh, A. Sanz-Andres, Atmos. Environ. 41, 6406 (2007)

    Article  ADS  Google Scholar 

  33. J. Bitog et al., Atmos. Environ. 43, 4612 (2009)

    Article  ADS  Google Scholar 

  34. A. Mohamed, A. AlamEldein, A. Saif, Air Quality Assessment of West Port-Said Industrial Region, Egypt, in Proceedings of ICFD11: Eleventh International Conference of Fluid Dynamics: December 19–21, 2013, Alexandria, Egypt (2013)

  35. A.M. Lavasani, P. Razi, R. Mehdipour, Int. J. Eng. Trans. A: Basics 29, 1014 (2016)

    Google Scholar 

  36. ANSYS FLUENT Theory Guide (ANSYS, Inc., Canonsburg, PA, 2017) p. 868.

  37. Standard test methods for specific gravity of soil solids by water pycnometer, in ASTM Volume 04.08: Soil and Rock (I) ASTM D854 (ASTM International, 2006)

  38. American Transportation of State Highway and Transportation Officials, Standard Specifications for Transportation Materials and Methods of Sampling and Testing and AASHTO Provisional Standards (AASHTO, 2016)

  39. Z. Dong, H. Wang, X. Liu, X. Wang, Earth Surf. Process. Landforms 29, 1613 (2004)

    Article  ADS  Google Scholar 

  40. J.P.M. Lugo, L. Rojas-Solorzano, J. Curtis, Rev. Fac. Ing. 27, 80 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Talaee.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarafrazi, V., Reza Talaee, M. Numerical simulation of sand transfer in wind storm using the Eulerian-Lagrangian two-phase flow model. Eur. Phys. J. E 42, 45 (2019). https://doi.org/10.1140/epje/i2019-11809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11809-8

Keywords

Navigation