Numerical simulation of sand transfer in wind storm using the Eulerian-Lagrangian two-phase flow model

  • Vahid Sarafrazi
  • Mohammad Reza TalaeeEmail author
Regular Article


In this paper a two-dimensional gas-solid flow model is used to investigate the sand particles carrying velocity of the Iran eastern desert area around the railway track as a case study. Reynolds-averaged Navier-Stokes (RANS) equations and Discrete Phase Method (DPM) are used to simulate the characteristic movement of sand particles in wind flow. A random sample is gathered from the sand near the railway in Iran deserts. The sample is classified based on weight and diameter according to AASHTOO T27 and sand distribution is determined. Using simulations, the carrying velocity of sand in each category in wind storm is determined. Finally, the sand distribution of the sample is imported to the model by the Rosin-Rummler dissipation model. The behavior of sand particles in storm considering wind blowing scheme of desert is studied parametrically. The results can be used for estimating the sand mitigation of a special desert and land desertification control around railway tracks.

Graphical abstract


Flowing Matter: Granular Materials 


  1. 1.
    J.A. Zakeri, A. Fathi, J. Transp. Res. 14, 349 (2017)Google Scholar
  2. 2.
    M. Hamidian Pour, A. Mofidi, M. Salighe, Iran. J. Geophys. 10, 83 (2016)Google Scholar
  3. 3.
    A. Tavili, Iranian Railway Technical Report Track and Technical Structure (2014)Google Scholar
  4. 4.
    X. Zheng, Mechanics of Wind-Blown Sand Movements (Springer Science & Business Media, 2009)Google Scholar
  5. 5.
    R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941)Google Scholar
  6. 6.
    W. Zhang, J.-H. Kang, S.-J. Lee, Geomorphology 86, 320 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    L. Kang, L. Guo, D. Liu, Sci. China Ser. G: Phys., Mech. Astron. 51, 986 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Dong, G. Qian, W. Luo, H. Wang, Sci. Cold Arid Reg. 2, 0185 (2010)Google Scholar
  9. 9.
    L. Kang, D. Liu, Geomorphology 115, 156 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    M. Carneiro, T. Pähtz, H. Herrmann, Phys. Rev. Lett. 107, 098001 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    M.V. Carneiro, N.A. Araújo, T. Pähtz, H.J. Herrmann, Phys. Rev. Lett. 111, 058001 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    T.-L. Bo, X.-J. Zheng, S.-Z. Duan, Y.-R. Liang, Eur. Phys. J. E 36, 50 (2013)CrossRefGoogle Scholar
  13. 13.
    N. Huang, X. Xia, D. Tong, Eur. Phys. J. E 36, 99 (2013)CrossRefGoogle Scholar
  14. 14.
    O. Durán, P. Claudin, B. Andreotti, Proc. Natl. Acad. Sci. U.S.A. 111, 15665 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    T. Pähtz, A. Omeradžić, M.V. Carneiro, N.A. Araújo, H.J. Herrmann, Geophys. Res. Lett. 42, 2063 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    L. Preziosi, D. Fransos, L. Bruno, Appl. Math. Lett. 45, 69 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    G. Gorchakov, A. Karpov, V. Kopeikin, A. Sokolov, D. Buntov, Dokl. Earth Sci. 467, 314 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    F. Xiao, Z. Dong, L. Guo, Y. Wang, D. Li, J. Arid Land 9, 331 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Lämmel, K. Dzikowski, K. Kroy, L. Oger, A. Valance, Phys. Rev. E 95, 022902 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    T. Pähtz, O. Durán, Phys. Rev. Fluids 2, 074303 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    T. Pähtz, O. Durán, Phys. Rev. Fluids 3, 104302 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    T. Pähtz, O. Durán, J. Geophys. Res.: Earth Surf. 123, 1638 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    W. He, N. Huang, B. Xu, W. Wang, Eur. Phys. J. E 41, 53 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    B. Xu, J. Zhang, N. Huang, K. Gong, Y. Liu, J. Geophys. Res.: Atmospheres 123, 6907 (2018)ADSGoogle Scholar
  25. 25.
    T. Wang, J. Qu, Y. Ling, B. Liu, J. Xiao, Aeolian Res. 30, 32 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    L. Bruno, D. Fransos, A.L. Giudice, J. Wind Eng. Ind. Aerodyn. 173, 79 (2018)CrossRefGoogle Scholar
  27. 27.
    L. Bruno, M. Horvat, L. Raffaele, J. Wind Eng. Ind. Aerodyn. 177, 340 (2018)CrossRefGoogle Scholar
  28. 28.
    L. Raffaele, L. Bruno, Eng. Struct. 178, 88 (2019)CrossRefGoogle Scholar
  29. 29.
    V. Yakhot, S. Orszag, S. Thangam, T. Gatski, C. Speziale, Phys. Fluids A: Fluid Dyn. 4, 1510 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    Q. Chen, Numer. Heat Transfer, Part B: Fundamentals 28, 353 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    D.R. Parsons, G.F. Wiggs, I.J. Walker, R.I. Ferguson, B.G. Garvey, Environ. Modell. Softw. 19, 153 (2004)CrossRefGoogle Scholar
  32. 32.
    J. Santiago, F. Martin, A. Cuerva, N. Bezdenejnykh, A. Sanz-Andres, Atmos. Environ. 41, 6406 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    J. Bitog et al., Atmos. Environ. 43, 4612 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    A. Mohamed, A. AlamEldein, A. Saif, Air Quality Assessment of West Port-Said Industrial Region, Egypt, in Proceedings of ICFD11: Eleventh International Conference of Fluid Dynamics: December 19–21, 2013, Alexandria, Egypt (2013)Google Scholar
  35. 35.
    A.M. Lavasani, P. Razi, R. Mehdipour, Int. J. Eng. Trans. A: Basics 29, 1014 (2016)Google Scholar
  36. 36.
    ANSYS FLUENT Theory Guide (ANSYS, Inc., Canonsburg, PA, 2017) p. 868. Google Scholar
  37. 37.
    Standard test methods for specific gravity of soil solids by water pycnometer, in ASTM Volume 04.08: Soil and Rock (I) ASTM D854 (ASTM International, 2006)Google Scholar
  38. 38.
    American Transportation of State Highway and Transportation Officials, Standard Specifications for Transportation Materials and Methods of Sampling and Testing and AASHTO Provisional Standards (AASHTO, 2016)Google Scholar
  39. 39.
    Z. Dong, H. Wang, X. Liu, X. Wang, Earth Surf. Process. Landforms 29, 1613 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    J.P.M. Lugo, L. Rojas-Solorzano, J. Curtis, Rev. Fac. Ing. 27, 80 (2012)Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Railway EngineeringIran University of Science and Technology (IUST)TehranIran

Personalised recommendations