Fluctuation-induced hydrodynamic coupling in an asymmetric, anisotropic dumbbell

  • Tunrayo Adeleke-LarodoEmail author
  • Pierre Illien
  • Ramin Golestanian
Regular Article


We recently introduced a model of an asymmetric dumbbell made of two hydrodynamically coupled subunits as a minimal model for a macromolecular complex, in order to explain the observation of enhanced diffusion of catalytically active enzymes. It was shown that internal fluctuations lead to a negative contribution to the overall diffusion coefficient and that the fluctuation-induced contribution is controlled by the strength of the interactions between the subunits and their asymmetry. We develop the model by studying the effect of anisotropy on the diffusion properties of a modular structure. Using a moment expansion method we derive an analytic form for the long-time diffusion coefficient of an asymmetric, anisotropic dumbbell and show systematically its dependence on internal and external symmetry. The method provides a tractable, analytical route for studying the stochastic dynamics of dumbbell models. The present work opens the way to more detailed descriptions of the effect of hydrodynamic interactions on the diffusion and transport properties of biomolecules with complex structures.

Graphical abstract


Living systems: Structure and Function 


  1. 1.
    B. Alberts, A. Johnson, J. Lewis, D. Morgan, M.C. Raff, P. Walter, K. Roberts, Molecular Biology of the Cell (Garland Science, New York, 2014)Google Scholar
  2. 2.
    H.S. Muddana, S. Sengupta, T.E. Mallouk, A. Sen, P.J. Butler, J. Am. Chem. Soc. 132, 2110 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Sengupta, M.M. Spiering, K.K. Dey, W. Duan, D. Patra, P.J. Butler, D.R. Astumian, S.J. Benkovic, A. Sen, ACS Nano 8, 2410 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Sengupta, K.K. Dey, H.S. Muddana, T. Tabouillot, M.E. Ibele, P.J. Butler, A. Sen, J. Am. Chem. Soc. 135, 1406 (2013)CrossRefGoogle Scholar
  5. 5.
    C. Riedel, R. Gabizon, C.A.M. Wilson, K. Hamadani, K. Tsekouras, S. Marqusee, S. Press, C. Bustamante, Nature 517, 227 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    R. Golestanian, Phys. Rev. Lett. 115, 108102 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    A.S. Mikhailov, R. Kapral, Proc. Natl. Acad. Sci. U.S.A. 112, E3639 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    X. Bai, P.G. Wolynes, J. Chem. Phys. 143, 165101 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    P. Illien, X. Zhao, K.K. Dey, P.J. Butler, A. Sen, R. Golestanian, Nano Lett. 17, 4415 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    P. Illien, T. Adeleke-Larodo, R. Golestanian, EPL 119, 40002 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    H. Brenner, A. Nadim, S. Haber, J. Fluid Mech. 183, 511 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    B.H. Zimm, J. Chem. Phys. 24, 269 (1956)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    H.C. Öttinger, J. Chem. Phys. 90, 463 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    H.C. Öttinger, Colloid Polym. Sci. 267, 1 (1989)CrossRefGoogle Scholar
  15. 15.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, International Series of Monographs on Physics, Vol. 73 (Clarendon Press, Oxford, 1986)Google Scholar
  16. 16.
    G. Wilemski, M. Fixman, J. Chem. Phys. 60, 866 (1974)ADSCrossRefGoogle Scholar
  17. 17.
    N. Levernier, M. Dolgushev, O. Bénichou, A. Blumen, T. Guérin, R. Voituriez, J. Chem. Phys. 143, 204108 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    J.G.D.L. Torre, M.C. Lopez, M.M. Tirado, J.J. Freire, Macromolecules 16, 1121 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Mechanics of Fluids and Transport Processes (Kluwer Academic, 1973)Google Scholar
  20. 20.
    S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Dover Publications, Mineola N.Y., 2005)Google Scholar
  21. 21.
    F. Rago, D. Saltzberg, K.N. Allen, D.R. Tolan, J. Am. Chem. Soc. 137, 13876 (2015)CrossRefGoogle Scholar
  22. 22.
    B.P. Roberts, B.R. Miller, A.E. Roitberg, K.M. Merz, J. Am. Chem. Soc. 134, 9934 (2012)CrossRefGoogle Scholar
  23. 23.
    E. Wajnryb, K.A. Mizerski, P.J. Zuk, P. Szymczak, J. Fluid Mech. 731, R3 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    J.G.D.L. Torre, V.A. Bloomfield, Biopolymers 16, 1747 (1977)CrossRefGoogle Scholar
  25. 25.
    J.G.D.L. Torre, V.A. Bloomfield, Biopolymers 16, 1765 (1977)CrossRefGoogle Scholar
  26. 26.
    B. Carrasco, J.G. de le Torre, Biophys. J. 76, 3044 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    J.G.D.L. Torre, V.A. Bloomfield, Biopolymers 16, 1779 (1977)CrossRefGoogle Scholar
  28. 28.
    S. Saha, R. Golestanian, S. Ramaswamy, Phys. Rev. E 89, 062316 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    A. Ahmadi, M.C. Marchetti, T.B. Liverpool, Phys. Rev. E 74, 061913 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    D. Saintillan, M.J. Shelley, Phys. Fluids 20, 123304 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    T. Goldfriend, H. Diamant, T.A. Witten, Phys. Rev. E 93, 042609 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    F. London, Trans. Faraday Soc. 33, 8b (1937)CrossRefGoogle Scholar
  34. 34.
    D.J. Jeffrey, Y. Onishi, J. Fluid Mech. 139, 261 (1984)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tunrayo Adeleke-Larodo
    • 1
    Email author
  • Pierre Illien
    • 1
    • 2
  • Ramin Golestanian
    • 3
    • 1
  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUK
  2. 2.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany

Personalised recommendations