Skip to main content
Log in

Confined flow behaviour of droplets in microcapillary flow

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The problem of droplets flowing in a micritions is relevant in several applications including flow in porous media. When the flow in the capillary is laminar with negligible gravity effects, droplet velocity and deformation depend upon three independent parameters: the droplet size relative to the capillary radius \(\alpha\)\((=a/R)\), which is a measure of confinement, the viscosity ratio \(\lambda\) between the droplet and the continuous phase and the capillary number Ca which measures the ratio of viscous to capillary forces. Although droplet microconfined flow behaviour in capillaries has been widely investigated by theoretical models, experimental results are still scarce. Here, an experimental campaign focused on the flow behaviour of axisymmetric confined droplets flowing in a microcapillary is carried out. Our experimental results were obtained by using a water in soybean oil emulsion with a low viscosity ratio and the effect of the aforementioned three parameters, \(\alpha\), \(\lambda\) and Ca, on droplet motion was investigated. Moreover, our experimental results are compared with numerical solutions available in the literature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Preziosi, G. Tomaiuolo, M. Fenizia, S. Caserta, S. Guido, J. Rheol. 60, 419 (2016)

    Article  ADS  Google Scholar 

  2. W.L. Olbricht, Annu. Rev. Fluid Mech. 28, 187 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Perazzo, G. Tomaiuolo, V. Preziosi, S. Guido, Adv. Colloid Interface Sci. 256, 305 (2018)

    Article  Google Scholar 

  4. L. Cunha, I. Siqueira, E. Albuquerque, T. Oliveira, Int. J. Multiphase Flow 103, 141 (2018)

    Article  MathSciNet  Google Scholar 

  5. A. Mandal, A. Bera, Pet. Sci. 12, 273 (2015)

    Article  Google Scholar 

  6. A. Kogan, N. Garti, Adv. Colloid Interface Sci. 123, 369 (2006)

    Article  Google Scholar 

  7. G. Tomaiuolo, M. Barra, V. Preziosi, A. Cassinese, B. Rotoli, S. Guido, Lab Chip 11, 449 (2011)

    Article  Google Scholar 

  8. T. Secomb, R. Skalak, N. Özkaya, J. Gross, J. Fluid Mech. 163, 405 (1986)

    Article  ADS  Google Scholar 

  9. V. Sibillo, G. Pasquariello, M. Simeone, V. Cristini, S. Guido, Phys. Rev. Lett. 97, 054502 (2006)

    Article  ADS  Google Scholar 

  10. S. Guido, Curr. Opin. Colloid Interface Sci. 16, 61 (2011)

    Article  Google Scholar 

  11. M. Shapira, S. Haber, Int. J. Multiphase Flow 16, 305 (1990)

    Article  Google Scholar 

  12. P.L. Maffettone, M. Minale, J. Non-Newtonian Fluid Mech. 78, 227 (1998)

    Article  Google Scholar 

  13. M.J. Martinez, K.S. Udell, J. Fluid Mech. 210, 565 (1990)

    Article  ADS  Google Scholar 

  14. B. Nath, G. Biswas, A. Dalal, K.C. Sahu, Phys. Rev. E 95, 033110 (2017)

    Article  ADS  Google Scholar 

  15. W.A. Hyman, R. Skalak, AIChE J. 18, 149 (1972)

    Article  Google Scholar 

  16. A. Vananroye, P. Van Puyvelde, P. Moldenaers, J. Rheol. 51, 139 (2007)

    Article  ADS  Google Scholar 

  17. B.P. Ho, L.G. Leal, J. Fluid Mech. 71, 361 (1975)

    Article  ADS  Google Scholar 

  18. W. Olbricht, D. Kung, Phys. Fluids A: Fluid Dyn. 4, 1347 (1992)

    Article  ADS  Google Scholar 

  19. H.L. Goldsmith, S.G. Mason, J. Colloid Sci. 18, 237 (1963)

    Article  Google Scholar 

  20. E. Lac, J.D. Sherwood, J. Fluid Mech. 640, 27 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. V. Sibillo, G. Pasquariello, M. Simeone, V. Cristini, S. Guido, Phys. Rev. Lett. 97, 054502 (2006)

    Article  ADS  Google Scholar 

  22. F. Bretherton, J. Fluid Mech. 10, 166 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  23. S.R. Hodges, O.E. Jensen, J.M. Rallison, J. Fluid Mech. 501, 279 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. L.W. Schwartz, H.M. Princen, A.D. Kiss, J. Fluid Mech. 172, 16 (1986)

    Article  Google Scholar 

  25. W.L. Olbricht, D.M. Kung, Phys. Fluids 4, 1347 (1992)

    Article  ADS  Google Scholar 

  26. G. Whitesides, Nature 442, 368 (2006)

    Article  ADS  Google Scholar 

  27. E. Shirani, S. Masoomi, J. Fuel Cell Sci. Technol. 5, 041008 (2008)

    Article  Google Scholar 

  28. H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)

    Article  ADS  Google Scholar 

  29. S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Lab Chip 8, 198 (2008)

    Article  Google Scholar 

  30. R.K. Shah, H.C. Shum, A.C. Rowat, D. Lee, J.J. Agresti, A.S. Utada, L.-Y. Chu, J.-W. Kim, A. Fernandez-Nieves, C.J. Martinez, Mater. Today 11, 18 (2008)

    Article  Google Scholar 

  31. R. D’Apolito, A. Perazzo, V. Preziosi, M. D’Antuono, G. Tomaiuolo, R. Miller, S. Guido, Langmuir 34, 4991 (2018)

    Article  Google Scholar 

  32. J.W. Harris, H. Stöcker, Handbook of Mathematics and Computational Science (Springer Science & Business Media, 1998)

  33. G. Tomaiuolo, D. Rossi, S. Caserta, M. Cesarelli, S. Guido, Cytom. Part A 81, 1040 (2012)

    Article  Google Scholar 

  34. S. Guido, V. Preziosi, Adv. Colloid Interface Sci. 161, 89 (2010)

    Article  Google Scholar 

  35. G. Hetsroni, S. Haber, E. Wacholder, J. Fluid Mech. 41, 689 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Preziosi.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Apolito, R., Preziosi, V., Khati Chhetri, S. et al. Confined flow behaviour of droplets in microcapillary flow. Eur. Phys. J. E 42, 29 (2019). https://doi.org/10.1140/epje/i2019-11790-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11790-2

Keywords

Navigation