Advertisement

Confined flow behaviour of droplets in microcapillary flow

  • Rosa D’Apolito
  • Valentina PreziosiEmail author
  • Sapana Khati Chhetri
  • Giovanna Tomaiuolo
  • Stefano Guido
Regular Article
  • 79 Downloads
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

The problem of droplets flowing in a micritions is relevant in several applications including flow in porous media. When the flow in the capillary is laminar with negligible gravity effects, droplet velocity and deformation depend upon three independent parameters: the droplet size relative to the capillary radius \(\alpha\)\((=a/R)\), which is a measure of confinement, the viscosity ratio \(\lambda\) between the droplet and the continuous phase and the capillary number Ca which measures the ratio of viscous to capillary forces. Although droplet microconfined flow behaviour in capillaries has been widely investigated by theoretical models, experimental results are still scarce. Here, an experimental campaign focused on the flow behaviour of axisymmetric confined droplets flowing in a microcapillary is carried out. Our experimental results were obtained by using a water in soybean oil emulsion with a low viscosity ratio and the effect of the aforementioned three parameters, \(\alpha\), \(\lambda\) and Ca, on droplet motion was investigated. Moreover, our experimental results are compared with numerical solutions available in the literature.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

References

  1. 1.
    V. Preziosi, G. Tomaiuolo, M. Fenizia, S. Caserta, S. Guido, J. Rheol. 60, 419 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    W.L. Olbricht, Annu. Rev. Fluid Mech. 28, 187 (1996)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Perazzo, G. Tomaiuolo, V. Preziosi, S. Guido, Adv. Colloid Interface Sci. 256, 305 (2018)CrossRefGoogle Scholar
  4. 4.
    L. Cunha, I. Siqueira, E. Albuquerque, T. Oliveira, Int. J. Multiphase Flow 103, 141 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Mandal, A. Bera, Pet. Sci. 12, 273 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Kogan, N. Garti, Adv. Colloid Interface Sci. 123, 369 (2006)CrossRefGoogle Scholar
  7. 7.
    G. Tomaiuolo, M. Barra, V. Preziosi, A. Cassinese, B. Rotoli, S. Guido, Lab Chip 11, 449 (2011)CrossRefGoogle Scholar
  8. 8.
    T. Secomb, R. Skalak, N. Özkaya, J. Gross, J. Fluid Mech. 163, 405 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    V. Sibillo, G. Pasquariello, M. Simeone, V. Cristini, S. Guido, Phys. Rev. Lett. 97, 054502 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    S. Guido, Curr. Opin. Colloid Interface Sci. 16, 61 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Shapira, S. Haber, Int. J. Multiphase Flow 16, 305 (1990)CrossRefGoogle Scholar
  12. 12.
    P.L. Maffettone, M. Minale, J. Non-Newtonian Fluid Mech. 78, 227 (1998)CrossRefGoogle Scholar
  13. 13.
    M.J. Martinez, K.S. Udell, J. Fluid Mech. 210, 565 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    B. Nath, G. Biswas, A. Dalal, K.C. Sahu, Phys. Rev. E 95, 033110 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    W.A. Hyman, R. Skalak, AIChE J. 18, 149 (1972)CrossRefGoogle Scholar
  16. 16.
    A. Vananroye, P. Van Puyvelde, P. Moldenaers, J. Rheol. 51, 139 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    B.P. Ho, L.G. Leal, J. Fluid Mech. 71, 361 (1975)ADSCrossRefGoogle Scholar
  18. 18.
    W. Olbricht, D. Kung, Phys. Fluids A: Fluid Dyn. 4, 1347 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    H.L. Goldsmith, S.G. Mason, J. Colloid Sci. 18, 237 (1963)CrossRefGoogle Scholar
  20. 20.
    E. Lac, J.D. Sherwood, J. Fluid Mech. 640, 27 (2009)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    V. Sibillo, G. Pasquariello, M. Simeone, V. Cristini, S. Guido, Phys. Rev. Lett. 97, 054502 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    F. Bretherton, J. Fluid Mech. 10, 166 (1961)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S.R. Hodges, O.E. Jensen, J.M. Rallison, J. Fluid Mech. 501, 279 (2004)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    L.W. Schwartz, H.M. Princen, A.D. Kiss, J. Fluid Mech. 172, 16 (1986)CrossRefGoogle Scholar
  25. 25.
    W.L. Olbricht, D.M. Kung, Phys. Fluids 4, 1347 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    G. Whitesides, Nature 442, 368 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    E. Shirani, S. Masoomi, J. Fuel Cell Sci. Technol. 5, 041008 (2008)CrossRefGoogle Scholar
  28. 28.
    H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Lab Chip 8, 198 (2008)CrossRefGoogle Scholar
  30. 30.
    R.K. Shah, H.C. Shum, A.C. Rowat, D. Lee, J.J. Agresti, A.S. Utada, L.-Y. Chu, J.-W. Kim, A. Fernandez-Nieves, C.J. Martinez, Mater. Today 11, 18 (2008)CrossRefGoogle Scholar
  31. 31.
    R. D’Apolito, A. Perazzo, V. Preziosi, M. D’Antuono, G. Tomaiuolo, R. Miller, S. Guido, Langmuir 34, 4991 (2018)CrossRefGoogle Scholar
  32. 32.
    J.W. Harris, H. Stöcker, Handbook of Mathematics and Computational Science (Springer Science & Business Media, 1998)Google Scholar
  33. 33.
    G. Tomaiuolo, D. Rossi, S. Caserta, M. Cesarelli, S. Guido, Cytom. Part A 81, 1040 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Guido, V. Preziosi, Adv. Colloid Interface Sci. 161, 89 (2010)CrossRefGoogle Scholar
  35. 35.
    G. Hetsroni, S. Haber, E. Wacholder, J. Fluid Mech. 41, 689 (1970)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rosa D’Apolito
    • 1
  • Valentina Preziosi
    • 1
    Email author
  • Sapana Khati Chhetri
    • 2
  • Giovanna Tomaiuolo
    • 1
    • 3
  • Stefano Guido
    • 1
    • 3
  1. 1.Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione IndustrialeUniversità di Napoli Federico IINapoliItaly
  2. 2.Department of Chemical EngineeringLoughborough UniversityLoughborough, LeicestershireUK
  3. 3.CEINGE Biotecnologie AvanzateNapoliItaly

Personalised recommendations