Surface flow profiles for dry and wet granular materials by Particle Tracking Velocimetry; the effect of wall roughness

Abstract.

Two-dimensional Particle Tracking Velocimetry (PTV) is a promising technique to study the behaviour of granular flows. The aim is to experimentally determine the free surface width and position of the shear band from the velocity profile to validate simulations in a split-bottom shear cell geometry. The position and velocities of scattered tracer particles are tracked as they move with the bulk flow by analyzing images. We then use a new technique to extract the continuum velocity field, applying coarse-graining with the postprocessing toolbox MercuryCG on the discrete experimental PTV data. For intermediate filling heights, the dependence of the shear (or angular) velocity on the radial coordinate at the free surface is well fitted by an error function. From the error function, we get the width and the centre position of the shear band. We investigate the dependence of these shear band properties on filling height and rotation frequencies of the shear cell for dry glass beads for rough and smooth wall surfaces. For rough surfaces, the data agrees with the existing experimental results and theoretical scaling predictions. For smooth surfaces, particle-wall slippage is significant and the data deviates from the predictions. We further study the effect of cohesion on the shear band properties by using small amount of silicon oil and glycerol as interstitial liquids with the glass beads. While silicon oil does not lead to big changes, glycerol changes the shear band properties considerably. The shear band gets wider and is situated further inward with increasing liquid saturation, due to the correspondingly increasing trend of particles to stick together.

Graphical abstract

References

  1. 1

    T. Kawaguchi, Adv. Powder Technol. 21, 235 (2010)

    Article  Google Scholar 

  2. 2

    K.M. Hill, A. Caprihan, J. Kakalios, Phys. Rev. Lett. 78, 50 (1997)

    ADS  Article  Google Scholar 

  3. 3

    M. Nakagawa, S. Altobelli, A. Caprihan, E. Fukushima, E.-K. Jeong, Exp. Fluids 16, 54 (1993)

    Article  Google Scholar 

  4. 4

    E. Ehrichs, H. Jaeger, G.S. Karczmar, J.B. Knight, V.Y. Kuperman, S.R. Nagel, Science 267, 1632 (1995)

    ADS  Article  Google Scholar 

  5. 5

    G.W. Baxter, R. Behringer, T. Fagert, G.A. Johnson, Phys. Rev. Lett. 62, 2825 (1989)

    ADS  Article  Google Scholar 

  6. 6

    C.F. Harwood, Powder Technol. 16, 51 (1977)

    Article  Google Scholar 

  7. 7

    G. Rátkai, Powder Technol. 15, 187 (1976)

    Article  Google Scholar 

  8. 8

    M. Guler, T.B. Edil, P.J. Bosscher, J. Comput. Civil Eng. 13, 116 (1999)

    Article  Google Scholar 

  9. 9

    H. Capart, D. Young, Y. Zech, Exp. Fluids 32, 121 (2002)

    Article  Google Scholar 

  10. 10

    D. Bonamy, F. Daviaud, L. Laurent, Phys. Fluids 14, 1666 (2002)

    ADS  Article  Google Scholar 

  11. 11

    R. Lueptow, A. Akonur, T. Shinbrot, Exp. Fluids 28, 183 (2000)

    Article  Google Scholar 

  12. 12

    G.A. Bokkers, M. van Sint Annaland, J.A.M. Kuipers, Powder Technol. 140, 176 (2004)

    Article  Google Scholar 

  13. 13

    J.A. Laverman, I. Roghair, M.v.S. Annaland, H. Kuipers, The Canadian J. Chem. Eng. 86, 523 (2008)

    Article  Google Scholar 

  14. 14

    C. Zeilstra, J. Collignon, M. Van der Hoef, N. Deen, J. Kuipers, Powder Technol. 184, 166 (2008)

    Article  Google Scholar 

  15. 15

    A. Jarray, V. Magnanimo, S. Luding, Powder Technol. 341, 126 (2019)

    Article  Google Scholar 

  16. 16

    H.-T. Chou, C.-F. Lee, Granular Matter 11, 13 (2009)

    Article  Google Scholar 

  17. 17

    W.-L. Yang, S.-S. Hsiau, Chem. Eng. Sci. 61, 6085 (2006)

    Article  Google Scholar 

  18. 18

    C.-C. Liao, S.-S. Hsiau, Chem. Eng. Sci. 64, 2562 (2009)

    Article  Google Scholar 

  19. 19

    S. Shirsath, J. Padding, H. Clercx, J. Kuipers, Chem. Eng. Sci. 134, 312 (2015)

    Article  Google Scholar 

  20. 20

    B. Sokoray-Varga, J. Józsa, Period. Polytech. Civil Eng. 52, 63 (2008)

    Article  Google Scholar 

  21. 21

    W. Nitsche, C. Dobriloff, Imaging Measurement Methods for Flow Analysis: Results of the DFG Priority Programme 1147 ``Imaging Measurement Methods for Flow Analysis'' 2003-2009, Vol. 106 (Springer Science & Business Media, 2009)

  22. 22

    Y.-C. Lei, W.-H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, J. Hove, Exp. Fluids 53, 1251 (2012)

    Article  Google Scholar 

  23. 23

    C. Jiang, Z. Dong, X. Wang, J. Arid Land 9, 727 (2017)

    Article  Google Scholar 

  24. 24

    C. Veje, D.W. Howell, R. Behringer, Phys. Rev. E 59, 739 (1999)

    ADS  Article  Google Scholar 

  25. 25

    B. Utter, R.P. Behringer, Phys. Rev. E 69, 031308 (2004)

    ADS  Article  Google Scholar 

  26. 26

    V. Jasti, C.F. Higgs III, Phys. Rev. E 78, 041306 (2008)

    ADS  Article  Google Scholar 

  27. 27

    D. Fenistein, M. van Hecke, Nature 425, 256 (2003)

    ADS  Article  Google Scholar 

  28. 28

    T. Unger, J. Török, J. Kertész, D.E. Wolf, Phys. Rev. Lett. 92, 214301 (2004)

    ADS  Article  Google Scholar 

  29. 29

    A. Ries, D.E. Wolf, T. Unger, Phys. Rev. E 76, 051301 (2007)

    ADS  Article  Google Scholar 

  30. 30

    J.A. Dijksman, Granular Media: Flow & Agitations, PhD Thesis (Granular and Disordered Media, Leiden Institute of Physics, Faculty of Science, Leiden University, 2009)

  31. 31

    J.A. Dijksman, M. van Hecke, Soft Matter 6, 2901 (2010)

    ADS  Article  Google Scholar 

  32. 32

    X. Cheng, J.B. Lechman, A. Fernandez-Barbero, G.S. Grest, H.M. Jaeger, G.S. Karczmar, M.E. Möbius, S.R. Nagel, Phys. Rev. Lett. 96, 38001 (2006)

    ADS  Article  Google Scholar 

  33. 33

    F. Spaepen, Acta Metall. 25, 407 (1977)

    Article  Google Scholar 

  34. 34

    J. Li, F. Spaepen, T. Hufnagel, Philos. Mag. A 82, 2623 (2002)

    ADS  Article  Google Scholar 

  35. 35

    L. Bécu, S. Manneville, A. Colin, Phys. Rev. Lett. 96, 138302 (2006)

    ADS  Article  Google Scholar 

  36. 36

    P. Chaudhuri, L. Berthier, L. Bocquet, Phys. Rev. E 85, 021503 (2012)

    ADS  Article  Google Scholar 

  37. 37

    J. Vermant, Curr. Opin. Colloid Interface Sci. 6, 489 (2001)

    Article  Google Scholar 

  38. 38

    R. Höhler, S. Cohen-Addad, J. Phys.: Condens. Matter 17, R1041 (2005)

    ADS  Google Scholar 

  39. 39

    P. Coussot, G. Ovarlez, Eur. Phys. J. E 33, 183 (2010)

    Article  Google Scholar 

  40. 40

    N. Estrada, A. Lizcano, A. Taboada, Phys. Rev. E 82, 011303 (2010)

    ADS  Article  Google Scholar 

  41. 41

    R. Mani, D. Kadau, D. Or, H.J. Herrmann, Phys. Rev. Lett. 109, 248001 (2012)

    ADS  Article  Google Scholar 

  42. 42

    R. Schwarze, A. Gladkyy, F. Uhlig, S. Luding, Granular Matter 15, 455 (2013)

    Article  Google Scholar 

  43. 43

    J. Yuan, Q. Zhang, B. Li, X. Zhao, Bull. Eng. Geol. Environ. 72, 107 (2013)

    Article  Google Scholar 

  44. 44

    A. Singh, V. Magnanimo, K. Saitoh, S. Luding, Phys. Rev. E 90, 022202 (2014)

    ADS  Article  Google Scholar 

  45. 45

    I. Goldhirsch, Granular Matter 12, 239 (2010)

    Article  Google Scholar 

  46. 46

    T. Weinhart, A.R. Thornton, S. Luding, O. Bokhove, Granular Matter 14, 289 (2012)

    Article  Google Scholar 

  47. 47

    A.R. Thornton, T. Weinhart, S. Luding, O. Bokhove, Int. J. Mod. Phys. C 23, 1240014 (2012)

    ADS  Article  Google Scholar 

  48. 48

    T. Weinhart, A.R. Thornton, S. Luding, O. Bokhove, Granular Matter 14, 531 (2012)

    Article  Google Scholar 

  49. 49

    T. Weinhart, R. Hartkamp, A.R. Thornton, S. Luding, Phys. Fluids 25, 070605 (2013)

    ADS  Article  Google Scholar 

  50. 50

    D.R. Tunuguntla, A.R. Thornton, T. Weinhart, Comput. Part. Mech. 3, 349 (2016)

    Article  Google Scholar 

  51. 51

    D.R. Tunuguntla, T. Weinhart, A.R. Thornton, in ALERT Doctoral School 2017: Discrete Element Modeling (2017) p. 181, ISBN 978-2-9542517-9-0

  52. 52

    D.R. Tunuguntla, T. Weinhart, A.R. Thornton, Comput. Part. Mech. 4, 387 (2017)

    Article  Google Scholar 

  53. 53

    T. Weinhart, D. Tunuguntla, M. van Schrojenstein-Lantman, A. van der Horn, I. Denissen, C. Windows-Yule, A. de Jong, A. Thornton, in International Conference on Discrete Element Methods (Springer, 2016) pp. 1353--1360

  54. 54

    T. Weinhart, D.R. Tunuguntla, M.P.V.S. Lantman, I.F. Denissen, C.R.W. Yule, H. Polman, J.M. Tsang, B. Jin, L. Orefice, K. Van Der Vaart, in V International Conference on Particle-Based Methods-Fundamentals and Applications, PARTICLES 2017 (International Center for Numerical Methods in Engineering, Barcelona, 2017)

  55. 55

    A.R. Thornton, D. Krijgsman, A. te Voortwis, V. Ogarko, S. Luding, R. Fransen, S. Gonzalez, O. Bokhove, O.I. Imole, T. Weinhart, in 6th International Conference on Discrete Element Methods and Related Computational Techniques, DEM6 (Colorado School of Mines, 2013)

  56. 56

    S. Roy, A. Singh, S. Luding, T. Weinhart, Comput. Part. Mech. 3, 449 (2016)

    Article  Google Scholar 

  57. 57

    S. Roy, S. Luding, T. Weinhart, New J. Phys. 19, 043014 (2017)

    ADS  Article  Google Scholar 

  58. 58

    S. Roy, S. Luding, T. Weinhart, Phys. Rev. E 98, 052906 (2018)

    ADS  Article  Google Scholar 

  59. 59

    Surface tension values of some common test liquids for surface energy analysis, http://www.surface-tension.de/

  60. 60

    T. Weigert, S. Ripperger, Part. Part. Syst. Charact. 16, 238 (1999)

    Article  Google Scholar 

  61. 61

    S. Roy, Hydrodynamic Theory of Wet Particle Systems, PhD Thesis (Multi-Scale Mechanics, Faculty of Engineering Technology, University of Twente, 2018)

  62. 62

    P. Schall, M. van Hecke, Annu. Rev. Fluid Mech. 42, 67 (2009)

    ADS  Article  Google Scholar 

  63. 63

    D. Fenistein, J.W. van de Meent, M. van Hecke, Phys. Rev. Lett. 92, 094301 (2004)

    ADS  Article  Google Scholar 

  64. 64

    P. Jop, Phys. Rev. E 77, 032301 (2008)

    ADS  Article  Google Scholar 

  65. 65

    J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179, 298 (1996)

    ADS  Article  Google Scholar 

  66. 66

    D. Blair, E. Dufrense, The matlab particle tracking code repository, http://site.physics.georgetown.edu/matlab/

  67. 67

    D. Umbach, K.N. Jones, IEEE Trans. Instrum. Meas. 52, 1881 (2003)

    Article  Google Scholar 

  68. 68

    P.R. Bevington, D.K. Robinson, J.M. Blair, A.J. Mallinckrodt, S. McKay, Comput. Phys. 7, 415 (1993)

    ADS  Article  Google Scholar 

  69. 69

    L.Y. Chang, N.S. Pollard, J. Biomech. 40, 1392 (2007)

    Article  Google Scholar 

  70. 70

    S. Luding, Part. Sci. Technol. 26, 33 (2008)

    ADS  Article  Google Scholar 

  71. 71

    J. Török, T. Unger, J. Kertész, D. Wolf, Phys. Rev. E 75, 011305 (2007)

    ADS  Article  Google Scholar 

  72. 72

    M. Depken, J.B. Lechman, M. van Hecke, W. van Saarloos, G.S. Grest, EPL 78, 58001 (2007)

    ADS  Article  Google Scholar 

  73. 73

    D.L. Henann, K. Kamrin, Proc. Natl. Acad. Sci. U.S.A. 110, 6730 (2013)

    ADS  Article  Google Scholar 

  74. 74

    F. Alonso-Marroquın, I. Vardoulakis, Powders and Grains 2005, Vol. 1 (Taylor and Francis Group, London, 2005) p. 701

  75. 75

    F. Alonso-Marroquin, S. Luding, H. Herrmann, I. Vardoulakis, Phys. Rev. E 71, 051304 (2005)

    ADS  Article  Google Scholar 

  76. 76

    F. Guillard, B. Marks, I. Einav, Sci. Rep. 7, 8155 (2017)

    ADS  Article  Google Scholar 

  77. 77

    G. Lian, C. Thornton, M.J. Adams, J. Colloid Interface Sci. 161, 138 (1993)

    ADS  Article  Google Scholar 

  78. 78

    S. Herminghaus, Adv. Phys. 54, 221 (2005)

    ADS  Article  Google Scholar 

  79. 79

    G. Ovarlez, S. Rodts, A. Ragouilliaux, P. Coussot, J. Goyon, A. Colin, Phys. Rev. E 78, 036307 (2008)

    ADS  Article  Google Scholar 

  80. 80

    S. Roy, S. Luding, W.K. Otter, A.R. Thornton, T. Weinhart, in preparation

  81. 81

    H. Shi, S. Roy, T. Weinhart, V. Magnanimo, S. Luding, submitted to Granular Matter (2018)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sudeshna Roy.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Scheper, B.J., Polman, H. et al. Surface flow profiles for dry and wet granular materials by Particle Tracking Velocimetry; the effect of wall roughness. Eur. Phys. J. E 42, 14 (2019). https://doi.org/10.1140/epje/i2019-11778-x

Download citation

Keywords

  • Topical issue: Flowing Matter, Problems and Applications