Actin filaments pushing against a barrier: Comparison between two force generation mechanisms

  • Raj Kumar SadhuEmail author
  • Sakuntala Chatterjee
Regular Article


To theoretically understand force generation properties of actin filaments, many models consider growing filaments pushing against a movable obstacle or barrier. In order to grow, the filaments need space and hence it is necessary to move the barrier. Two different mechanisms for this growth are widely considered in the literature. In one class of models (type A , the filaments can directly push the barrier and move it, thereby performing some work in the process. In another type of models (type B , the filaments wait till thermal fluctuations of the barrier position create enough space between the filament tip and the barrier, and then they grow by inserting one monomer in that gap. The difference between these two types of growth seems microscopic and rather a matter of modelling details. However, we find that this difference has an important effect on many qualitative features of the models. In particular, how the relative time-scale between the barrier dynamics and filament dynamics influences the force generation properties is significantly different for type A and B models. We illustrate these differences for three types of barrier: a rigid wall-like barrier, an elastic barrier and a barrier with Kardar-Parisi-Zhang dynamics. Our numerical simulations match well with our analytical calculations. Our study highlights the importance of taking the details of the filament-barrier interaction into account while modelling the force generation properties of actin filaments.

Graphical abstract


Living systems: Cellular Processes 


  1. 1.
    J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sunderland, MA, Sinauer Associates, 2001)Google Scholar
  2. 2.
    T.D. Pollard, J.A. Cooper, Science 326, 1208 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    L. Blanchoin, R.B. Paterski, C. Sykes, J. Plastino, Physiol. Rev. 94, 235 (2014)CrossRefGoogle Scholar
  4. 4.
    P. Friedl, D. Gilmour, Nat. Rev. Mol. Cell Biol. 10, 445 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Plastino, C. Sykes, Curr. Opin. Cell Biol. 17, 62 (2005)CrossRefGoogle Scholar
  6. 6.
    Y. Marcy, J. Prost, M.F. Carlier, C. Sykes, Proc. Natl. Acad. Sci. U.S.A. 101, 5992 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    C. Brangbour, O. du Roure, E. Helfer, D. Démoulin, A. Mazurier, M. Fermigier, M.F. Carlier, J. Bibette, J. Baudry, PLoS Biol. 9, e1000613 (2011)CrossRefGoogle Scholar
  8. 8.
    S.H. Parekh, O. Chaudhuri, J.A. Theriot, D.A. Fletcher, Nat. Cell Biol. 7, 1219 (2005)CrossRefGoogle Scholar
  9. 9.
    M. Prass, K. Jacobson, A. Mogilner, M. Radmacher, J. Cell. Biol. 174, 767 (2006)CrossRefGoogle Scholar
  10. 10.
    J. Zimmermann, C. Brunner, M. Enculescu, M. Goegler, A. Ehrlicher, J. Käs, M. Falcke, Biophys. J. 102, 287 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    M.J. Footer, J.W.J. Kerssemakers, J.A. Theriot, M. Dogterom, Proc. Natl. Acad. Sci. U.S.A. 104, 2181 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    R. Wang, A.E. Carlsson, New J. Phys 16, 113047 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    S.L. Narasimhan, A. Baumgaertner, J. Chem. Phys. 133, 034702 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    A. Perilli, C. Piereoni, G. Ciccotti, J.P. Ryckaert, J. Chem. Phys. 148, 095101 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    J. Valiyakath, M. Gopalakrishnan, Scientific Reports 8, 2526 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    R.K. Sadhu, S. Chatterjee, Phys. Rev. E 93, 062414 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    K. Tsekouras, D. Lacoste, K. Mallick, J.F. Joanny, New J. Phys. 13, 103032 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    J. Krawczyk, J. Kierfeld, EPL 93, 28006 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    D. Das, D. Das, R. Padinhateeri, New J. Phys. 16, 063032 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    D.K. Hansda, S. Sen, R. Padinhateeri, Phys. Rev. E 90, 062718 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    R.K. Sadhu, S. Chatterjee, Phys. Rev. E 97, 032408 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    X. Li, A.B. Kolomeisky, J. Phys. Chem. B 119, 4653 (2015)CrossRefGoogle Scholar
  23. 23.
    C.S. Peskin, G.M. Odell, G.F. Oster, Biophys. J. 65, 316 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    A. Mogilner, G. Oster, Biophys. J. 71, 3030 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    A. Volmer, U. Seifert, R. Lipowsky, Eur. Phys. J. B 5, 811 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    R. Lipowsky, S. Grotehans, Biophys. Chem. 49, 27 (1994)CrossRefGoogle Scholar
  27. 27.
    R. Lipowsky, S. Grotehans, Europhys. Lett. 23, 599 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    A. Baumgaertner, J. Chem. Phys. 137, 144906 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    T.D. Pollard, J. Cell. Biol. 103, 2747 (1986)CrossRefGoogle Scholar
  30. 30.
    A.E. Carlsson, Phys. Biol. 5, 036002 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    M. Kardar, G. Parisi, Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Theoretical SciencesS. N. Bose National Centre for Basic SciencesSalt Lake, KolkataIndia

Personalised recommendations