Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. The European Physical Journal E
  3. Article

Dynamics of sedimenting active Brownian particles

  • Regular Article
  • Open Access
  • Published: 30 January 2019
  • volume 42, Article number: 11 (2019)
Download PDF

You have full access to this open access article

The European Physical Journal E Aims and scope Submit manuscript
Dynamics of sedimenting active Brownian particles
Download PDF
  • Jérémy Vachier1 &
  • Marco G. Mazza1,2 
  • 1051 Accesses

  • 11 Citations

  • 2 Altmetric

  • Explore all metrics

  • Cite this article

Abstract.

We investigate the stochastic dynamics of one sedimenting active Brownian particle in three dimensions under the influence of gravity and passive fluctuations in the translational and rotational motion. We present an analytical solution of the Fokker-Planck equation for the stochastic process which allows us to describe the dynamics of one active Brownian particle in three dimensions. We address the time evolution of the density, the polarization, and the steady-state solution. We also perform Brownian dynamics simulations and study the effect of the activity of the particles on their collective motion. These results qualitatively agree with our model. Finally, we compare our results with experiments (J. Palacci et al., Phys. Rev. Lett. 105, 088304 (2010)) and find very good agreement.

Graphical abstract

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)

    Article  ADS  Google Scholar 

  2. A. Ghosh, P. Fischer, Nano Lett. 9, 2243 (2009)

    Article  ADS  Google Scholar 

  3. S. Kim, F. Qiu, S. Kim, A. Ghanbari, C. Moon, L. Zhang, B.J. Nelson, H. Choi, Adv. Mater. 25, 5863 (2013)

    Article  Google Scholar 

  4. C.C. Maass, C. Krüger, S. Herminghaus, C. Bahr, Annu. Rev. Condens. Matter Phys. 7, 171 (2016)

    Article  ADS  Google Scholar 

  5. C. Krüger, G. Klös, C. Bahr, C.C. Maass, Phys. Rev. Lett. 117, 048003 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  6. C. Jin, C. Krüger, C.C. Maass, Proc. Natl. Acad. Sci. U.S.A. 114, 5089 (2017)

    Article  ADS  Google Scholar 

  7. E.M. Purcell, Am. J. Phys. 45, 3 (1977)

    Article  ADS  Google Scholar 

  8. R. Golestanian, Phys. Rev. Lett. 102, 188305 (2009)

    Article  ADS  Google Scholar 

  9. M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011)

    Article  ADS  Google Scholar 

  10. B. Ten Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014)

    Article  ADS  Google Scholar 

  11. A.I. Campbell, R. Wittkowski, B. ten Hagen, H. Löwen, S.J. Ebbens, J. Chem. Phys. 147, 084905 (2017)

    Article  ADS  Google Scholar 

  12. J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010)

    Article  ADS  Google Scholar 

  13. F. Ginot, I. Theurkauff, D. Levis, C. Ybert, L. Bocquet, L. Berthier, C. Cottin-Bizonne, Phys. Rev. X 5, 011004 (2015)

    Google Scholar 

  14. P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. ST 202, 1 (2012)

    Article  Google Scholar 

  15. F.J. Sevilla, M. Sandoval, Phys. Rev. E 91, 052150 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Pototsky, H. Stark, EPL 98, 50004 (2012)

    Article  ADS  Google Scholar 

  17. F.J. Sevilla, L.A. Gómez Nava, Phys. Rev. E 90, 022130 (2014)

    Article  ADS  Google Scholar 

  18. C.G. Wagner, M.F. Hagan, A. Baskaran, J. Stat. Mech. 2017, 043203 (2017)

    Article  Google Scholar 

  19. S. Hermann, M. Schmidt, Soft Matter 14, 1614 (2018)

    Article  ADS  Google Scholar 

  20. K. Wolff, A.M. Hahn, H. Stark, Eur. Phys. J. E 36, 43 (2013)

    Article  Google Scholar 

  21. F.J. Sevilla, Phys. Rev. E 94, 062120 (2016)

    Article  ADS  Google Scholar 

  22. J. Tailleur, M.E. Cates, EPL 86, 60002 (2009)

    Article  ADS  Google Scholar 

  23. C. Kurzthaler, S. Leitmann, T. Franosch, Sci. Rep. 6, 36702 (2016)

    Article  ADS  Google Scholar 

  24. F. Ginot, A. Solon, Y. Kafri, C. Ybert, J. Tailleur, C. Cottin-Bizonne, arXiv:1805.08681 (2018)

  25. R.W. Nash, R. Adhikari, J. Tailleur, M.E. Cates, Phys. Rev. Lett. 104, 258101 (2010)

    Article  ADS  Google Scholar 

  26. N.V. Kampen, Stochastic Processes in Physics and Chemistry, third edition (North Holland, 2007)

  27. C. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, Heidelberg, 1983)

  28. H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, Heidelberg, 1984)

  29. T.D. Frank, Nonlinear Fokker-Planck Equations (Springer-Verlag, Berlin, Heidelberg, 2005)

  30. G.A. Pavliotis, Stochastic Processes and Applications Diffusion Processes, the Fokker-Planck and Langevin Equations (Springer-Verlag, New York, 2014)

  31. V. Ilyin, I. Procaccia, A. Zagorodny, Condens. Matter Phys. 16, 13004 (2013)

    Article  Google Scholar 

  32. H. Stark, Eur. Phys. J. ST 225, 2369 (2016)

    Article  Google Scholar 

  33. M. Cates, J. Tailleur, EPL 101, 20010 (2013)

    Article  ADS  Google Scholar 

  34. S. Redner, A Guide to First-passage Processes (Cambridge University Press, 2001)

  35. A. Sommerfeld, Partial Differential Equations in Physics, Vol. 1 (Academic Press, 1949)

  36. A.D. Aleksandrov, M.A. Lavrent’ev, Mathematics: Its Content, Methods and Meaning (Courier Corporation, 1999)

  37. D.R. Cox, The Theory of Stochastic Processes (Routledge, 2017)

  38. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

    Article  ADS  Google Scholar 

  39. S. Das, A. Garg, A.I. Campbell, J. Howse, A. Sen, D. Velegol, R. Golestanian, S.J. Ebbens, Nat. Commun. 6, 8999 (2015)

    Article  ADS  Google Scholar 

  40. G.K. Batchelor, J. Fluid Mech. 52, 245 (1972)

    Article  ADS  Google Scholar 

  41. P.N. Segrè, E. Herbolzheimer, P.M. Chaikin, Phys. Rev. Lett. 79, 2574 (1997)

    Article  ADS  Google Scholar 

  42. R. Piazza, Rep. Prog. Phys. 77, 056602 (2014)

    Article  ADS  Google Scholar 

  43. J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)

    Article  ADS  Google Scholar 

  44. A. Baskaran, M.C. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009)

    Article  ADS  Google Scholar 

  45. J. Perrin, Ann. Chim. Phys 8, 1 (1909)

    Google Scholar 

  46. V.I. Klyatskin, Stochastic Equations: Theory and Applications in Acoustics, Hydrodynamics, Magnetohydrodynamics, and Radiophysics, Vol. 1 (Springer International Publishing, Switzerland, 2015)

  47. V.V. Konotop, L. Vasquez, Nonlinear Random Waves (World Scientific, Singapore, 1994)

  48. T.D. Frank, Phys. Rev. E 71, 031106 (2005)

    Article  ADS  Google Scholar 

  49. E.A. Novikov, JETP 20, 1290 (1965)

    ADS  Google Scholar 

  50. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, 2002)

  51. W.T. Coffey, Y.P. Kalmykov, The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, Vol. 27 (World Scientific, 2012)

Download references

Acknowledgments

Open Access funding provided by Max Planck Society.

Author information

Authors and Affiliations

  1. Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany

    Jérémy Vachier & Marco G. Mazza

  2. Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, LE11 3TU, Loughborough, Leicestershire, UK

    Marco G. Mazza

Authors
  1. Jérémy Vachier
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Marco G. Mazza
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Marco G. Mazza.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vachier, J., Mazza, M.G. Dynamics of sedimenting active Brownian particles. Eur. Phys. J. E 42, 11 (2019). https://doi.org/10.1140/epje/i2019-11770-6

Download citation

  • Received: 16 January 2018

  • Accepted: 04 January 2019

  • Published: 30 January 2019

  • DOI: https://doi.org/10.1140/epje/i2019-11770-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Flowing matter: Nonlinear Physics and Mesoscale Modeling

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature