Abstract.
We investigate the stochastic dynamics of one sedimenting active Brownian particle in three dimensions under the influence of gravity and passive fluctuations in the translational and rotational motion. We present an analytical solution of the Fokker-Planck equation for the stochastic process which allows us to describe the dynamics of one active Brownian particle in three dimensions. We address the time evolution of the density, the polarization, and the steady-state solution. We also perform Brownian dynamics simulations and study the effect of the activity of the particles on their collective motion. These results qualitatively agree with our model. Finally, we compare our results with experiments (J. Palacci et al., Phys. Rev. Lett. 105, 088304 (2010)) and find very good agreement.
Graphical abstract

References
J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)
A. Ghosh, P. Fischer, Nano Lett. 9, 2243 (2009)
S. Kim, F. Qiu, S. Kim, A. Ghanbari, C. Moon, L. Zhang, B.J. Nelson, H. Choi, Adv. Mater. 25, 5863 (2013)
C.C. Maass, C. Krüger, S. Herminghaus, C. Bahr, Annu. Rev. Condens. Matter Phys. 7, 171 (2016)
C. Krüger, G. Klös, C. Bahr, C.C. Maass, Phys. Rev. Lett. 117, 048003 (2016)
C. Jin, C. Krüger, C.C. Maass, Proc. Natl. Acad. Sci. U.S.A. 114, 5089 (2017)
E.M. Purcell, Am. J. Phys. 45, 3 (1977)
R. Golestanian, Phys. Rev. Lett. 102, 188305 (2009)
M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011)
B. Ten Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014)
A.I. Campbell, R. Wittkowski, B. ten Hagen, H. Löwen, S.J. Ebbens, J. Chem. Phys. 147, 084905 (2017)
J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010)
F. Ginot, I. Theurkauff, D. Levis, C. Ybert, L. Bocquet, L. Berthier, C. Cottin-Bizonne, Phys. Rev. X 5, 011004 (2015)
P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. ST 202, 1 (2012)
F.J. Sevilla, M. Sandoval, Phys. Rev. E 91, 052150 (2015)
A. Pototsky, H. Stark, EPL 98, 50004 (2012)
F.J. Sevilla, L.A. Gómez Nava, Phys. Rev. E 90, 022130 (2014)
C.G. Wagner, M.F. Hagan, A. Baskaran, J. Stat. Mech. 2017, 043203 (2017)
S. Hermann, M. Schmidt, Soft Matter 14, 1614 (2018)
K. Wolff, A.M. Hahn, H. Stark, Eur. Phys. J. E 36, 43 (2013)
F.J. Sevilla, Phys. Rev. E 94, 062120 (2016)
J. Tailleur, M.E. Cates, EPL 86, 60002 (2009)
C. Kurzthaler, S. Leitmann, T. Franosch, Sci. Rep. 6, 36702 (2016)
F. Ginot, A. Solon, Y. Kafri, C. Ybert, J. Tailleur, C. Cottin-Bizonne, arXiv:1805.08681 (2018)
R.W. Nash, R. Adhikari, J. Tailleur, M.E. Cates, Phys. Rev. Lett. 104, 258101 (2010)
N.V. Kampen, Stochastic Processes in Physics and Chemistry, third edition (North Holland, 2007)
C. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, Heidelberg, 1983)
H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, Heidelberg, 1984)
T.D. Frank, Nonlinear Fokker-Planck Equations (Springer-Verlag, Berlin, Heidelberg, 2005)
G.A. Pavliotis, Stochastic Processes and Applications Diffusion Processes, the Fokker-Planck and Langevin Equations (Springer-Verlag, New York, 2014)
V. Ilyin, I. Procaccia, A. Zagorodny, Condens. Matter Phys. 16, 13004 (2013)
H. Stark, Eur. Phys. J. ST 225, 2369 (2016)
M. Cates, J. Tailleur, EPL 101, 20010 (2013)
S. Redner, A Guide to First-passage Processes (Cambridge University Press, 2001)
A. Sommerfeld, Partial Differential Equations in Physics, Vol. 1 (Academic Press, 1949)
A.D. Aleksandrov, M.A. Lavrent’ev, Mathematics: Its Content, Methods and Meaning (Courier Corporation, 1999)
D.R. Cox, The Theory of Stochastic Processes (Routledge, 2017)
S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)
S. Das, A. Garg, A.I. Campbell, J. Howse, A. Sen, D. Velegol, R. Golestanian, S.J. Ebbens, Nat. Commun. 6, 8999 (2015)
G.K. Batchelor, J. Fluid Mech. 52, 245 (1972)
P.N. Segrè, E. Herbolzheimer, P.M. Chaikin, Phys. Rev. Lett. 79, 2574 (1997)
R. Piazza, Rep. Prog. Phys. 77, 056602 (2014)
J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)
A. Baskaran, M.C. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009)
J. Perrin, Ann. Chim. Phys 8, 1 (1909)
V.I. Klyatskin, Stochastic Equations: Theory and Applications in Acoustics, Hydrodynamics, Magnetohydrodynamics, and Radiophysics, Vol. 1 (Springer International Publishing, Switzerland, 2015)
V.V. Konotop, L. Vasquez, Nonlinear Random Waves (World Scientific, Singapore, 1994)
T.D. Frank, Phys. Rev. E 71, 031106 (2005)
E.A. Novikov, JETP 20, 1290 (1965)
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, 2002)
W.T. Coffey, Y.P. Kalmykov, The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, Vol. 27 (World Scientific, 2012)
Acknowledgments
Open Access funding provided by Max Planck Society.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Vachier, J., Mazza, M.G. Dynamics of sedimenting active Brownian particles. Eur. Phys. J. E 42, 11 (2019). https://doi.org/10.1140/epje/i2019-11770-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/i2019-11770-6
Keywords
- Flowing matter: Nonlinear Physics and Mesoscale Modeling