Skip to main content
Log in

A note on evolution of pressure and flow within an evaporating capillary bridge

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Experiments with evaporation of capillary bridges between two glass spheres show that the bridge gorge radius decreases much faster than the contact radius, distorting the original constant mean curvature bridge shape. In addition, the Laplace pressure calculated from local principal curvatures exhibits high gradients along the bridge moving external surface, most commonly with a high suction near the triple phase contact and positive pressure near the gorge. The high suction results from a negative external curvature at contact. Numerical dynamic simulations with a moving evaporating interface do not currently allow for reproducing a negative external curvature at contact. A series of static simulations are shown based on a representation of an experimentally observed interface, which does include the negative curvature at contact. The resulting Laplace pressure distribution is close to the experimental ones. Most importantly, the pressure gradients induce a consistent flow of liquid from the central area of the bridge, axially toward the solid contact, and then along the solid interface toward the contact area. The flow is believed to contribute to contact pinning. Pinning is viewed as one of the precursors of capillary bridge rupture.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. H. Péron, T. Hueckel, L. Laloui, L.B. Hu, Can. Geotechn. J. 46, 1177 (2009)

    Article  Google Scholar 

  2. H. Péron, L. Laloui, T. Hueckel, L.B. Hu, Eur. J. Environ. Civil Eng. 13, 869 (2009)

    Article  Google Scholar 

  3. L.B. Hu, H. Péron, T. Hueckel, L. Laloui, Int. J. Numer. Anal. Methods Geomech. 37, 1761 (2013)

    Article  Google Scholar 

  4. L.B. Hu, H. Péron, T. Hueckel, L. Laloui, Int. J. Numer. Anal. Methods Geomech. 37, 1782 (2013)

    Article  Google Scholar 

  5. T. Hueckel, B. Mielniczuk, M.S. El Youssoufi, L.B. Hu, L. Laloui, Acta Geophys. 62, 1049 (2014)

    Article  ADS  Google Scholar 

  6. T. Young, Philos. Trans. 95, 65 (1805)

    Article  Google Scholar 

  7. P.S. Laplace, Traité de Mécanique Céleste, Vol. 4, Supplément au dixième livre du Traité de Mécanique Céleste (Courcier, Paris, France, 1805) pp. 1--79

  8. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Elsevier, 2007)

  9. K. Hotta, K. Takeda, K. Iinoya, Powder Technol. 10, 231 (1974)

    Article  Google Scholar 

  10. G. Lian, C. Thornton, M.J. Adams, Colloid Interface Sci. 161, 138 (1993)

    Article  ADS  Google Scholar 

  11. C.H. Delaunay, J. Math. Pures Appl. 6, 309 (1841)

    Google Scholar 

  12. G. Gagneux, O. Millet, Transp. Porous Medion 105, 117 (2014)

    Article  Google Scholar 

  13. P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Bourges-Monnier, M.E.R. Shanahan, Langmuir 11, 2820 (1995)

    Article  Google Scholar 

  15. H.Y. Erbil, Cheminform 170, 67 (2012)

    Google Scholar 

  16. E. Bormashenko, Colloid Polym. Sci. 291, 339 (2013)

    Article  Google Scholar 

  17. B. Mielniczuk, T. Hueckel, M.S. El Youssoufi, in Geo-Congress 2013, (ASCE, 2013) pp. 808--817, https://doi.org/10.1061/9780784412787.082

  18. B. Mielniczuk, T. Hueckel, M.S. El Youssoufi, Granular Matter 16, 815 (2014)

    Article  Google Scholar 

  19. B. Mielniczuk, T. Hueckel, M.S. El Youssoufi, Powder Technol. 283, 137 (2015)

    Article  Google Scholar 

  20. N. Maeda, J.N. Israelachvili, M.M. Kohonen, Proc. Natl. Acad. Sci. U.S.A. 100, 803 (2003)

    Article  ADS  Google Scholar 

  21. C.D. Willett, M.J. Adams, S.A. Johnson, J.P.K. Seville, Powder Technol. 130, 63 (2003)

    Article  Google Scholar 

  22. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)

    Article  ADS  Google Scholar 

  23. H. Hu, R.G. Larson, Phys. Chem. B 106, 1334 (2002)

    Article  ADS  Google Scholar 

  24. A. Marmur, Soft Matter 2, 12 (2006)

    Article  ADS  Google Scholar 

  25. R.N. Wentzel, Ind. Eng. Chem. 28, 988 (1936)

    Article  Google Scholar 

  26. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)

    Article  Google Scholar 

  27. M.E.R. Shanahan, Langmuir 11, 1041 (1995)

    Article  Google Scholar 

  28. G. Whyman, E. Bormashenko, Langmuir 27, 8171 (2011)

    Article  Google Scholar 

  29. E. Bormashenko, A. Musin, G. Whyman, M. Zinigrad, Langmuir 28, 3460 (2012)

    Article  Google Scholar 

  30. H. Hu, R.G. Larson, Langmuir 21, 3963 (2005)

    Article  Google Scholar 

  31. G. Berteloot, C.T. Pham, A. Daerr, F. Lequeux, L. Limat, EPL 83, 14003 (2008)

    Article  ADS  Google Scholar 

  32. N. Murisic, L. Kondic, J. Fluid Mech. 679, 219 (2011)

    Article  ADS  Google Scholar 

  33. S. Gaudet, G.H. McKinley, H.A. Stone, Phys. Fluids 8, 2568 (1996)

    Article  ADS  Google Scholar 

  34. H. Hu, R.G. Larson, Langmuir 21, 3972 (2005)

    Article  Google Scholar 

  35. C.M. Ma, T. Hueckel, Int. J. Eng. Sci. 30, 1567 (1992)

    Article  Google Scholar 

  36. Y. Yang, L. Zhou, X. Du, Y. Yang, Langmuir 34, 3853 (2018)

    Article  Google Scholar 

  37. B. Mielniczuk, O. Millet, G. Gagneux, M.S. El Youssoufi, Granular Matter 20, 14 (2018)

    Article  Google Scholar 

  38. J.B. Bostwick, P.H. Steen, Annu. Rev. Fluid Mech. 47, 539 (2015)

    Article  ADS  Google Scholar 

  39. P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Gouttes, bulles, perles et ondes (Belin, 2002)

  40. B. Mielniczuk, L. Sabbatier, T. Hueckel, M.S. El Youssoufi, Acta Geophys. 62, 1087 (2014)

    Article  ADS  Google Scholar 

  41. R. Scardovelli, S. Zaleski, Annu. Rev. Fluid, Mech. 31, 567 (1999)

    Article  ADS  Google Scholar 

  42. S. Afkhami, S. Zaleski, M. Bussmann, J. Comput. Phys. 228, 5370 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  43. P.T. Yue, C.F. Zhou, J.J. Feng, C.F. Ollivier-Gooch, H.H. Hu, J. Comput. Phys. 219, 47 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  44. E. Ramé, S. Garoff, J. Colloid Interface Sci. 177, 234 (1996)

    Article  ADS  Google Scholar 

  45. T.D. Blake, M. Bracke, Y.D. Shikhmurzaev, Phys. Fluids 11, 1995 (1999)

    Article  ADS  Google Scholar 

  46. C. Huh, L.E. Scriven, J. Colloid Interface Sci. 35, 85 (1971)

    Article  ADS  Google Scholar 

  47. V.E.B. Dussan., Annu. Rev. Fluid Mech. 11, 371 (1979)

    Article  ADS  Google Scholar 

  48. Y.D. Shikhmurzaev, Physica D 217, 121 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  49. J.F. Gerbeau, T. Lelievre, Comput. Methods Appl. Mech. Eng. 198, 644 (2009)

    Article  ADS  Google Scholar 

  50. J.H. Snoeijer, B. Andreotti, Annu. Rev. Fluid Mech. 45, 269 (2013)

    Article  ADS  Google Scholar 

  51. J.P. Gras, J.Y. Delenne, M.S. El Youssoufi, Granular Matter 15, 49 (2013)

    Article  Google Scholar 

  52. J. Donea, S. Giuliani, J.P. Halleux, Comput. Methods Appl. Mech. Eng. 33, 689 (1982)

    Article  ADS  Google Scholar 

  53. P.M. Knupp, Proceedings of the 7th International Meshing Roundtable'98 (Sandia National Laboratories, 1998) pp. 449--457

  54. T.F. Irvine, P.E. Liley, Steam and Gas Tables with Computer Equations (Academic Press, New York, NY, 1984)

  55. E. Keita, S.A. Koehler, P. Faure, D.A. Weitz, P. Coussot, Eur. Phys. J. E 39, 23 (2016)

    Article  Google Scholar 

  56. J.C. Fernandez-Toledano, T.D. Blake, P. Lambert, J. De Coninck, Adv. Colloid Interface Sci. 245, 102 (2017)

    Article  Google Scholar 

  57. A.Y. Rednikov, P. Colinet, Phys. Rev. Fluids 2, 124006 (2017)

    Article  ADS  Google Scholar 

  58. B. Sobac, D. Brutin, in Droplet Wetting and Evaporation: From Pure to Complex Fluids, edited by B. Sobac, D. Brutin (Academic Press, 2015) pp. 103--114

  59. S.J.S. Morris, J. Fluid Mech. 432, 1 (2001)

    ADS  Google Scholar 

  60. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Phys. Rev. E 62, 756 (2000)

    Article  ADS  Google Scholar 

  61. V.E.B. Dussan, S.H. Davis, J. Fluid Mech. 65, 71 (1974) part 1

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Mielniczuk, B., Saïd El Youssoufi, M. et al. A note on evolution of pressure and flow within an evaporating capillary bridge. Eur. Phys. J. E 41, 140 (2018). https://doi.org/10.1140/epje/i2018-11748-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11748-x

Keywords

Navigation