Abstract.
Experiments with evaporation of capillary bridges between two glass spheres show that the bridge gorge radius decreases much faster than the contact radius, distorting the original constant mean curvature bridge shape. In addition, the Laplace pressure calculated from local principal curvatures exhibits high gradients along the bridge moving external surface, most commonly with a high suction near the triple phase contact and positive pressure near the gorge. The high suction results from a negative external curvature at contact. Numerical dynamic simulations with a moving evaporating interface do not currently allow for reproducing a negative external curvature at contact. A series of static simulations are shown based on a representation of an experimentally observed interface, which does include the negative curvature at contact. The resulting Laplace pressure distribution is close to the experimental ones. Most importantly, the pressure gradients induce a consistent flow of liquid from the central area of the bridge, axially toward the solid contact, and then along the solid interface toward the contact area. The flow is believed to contribute to contact pinning. Pinning is viewed as one of the precursors of capillary bridge rupture.
Graphical abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
H. Péron, T. Hueckel, L. Laloui, L.B. Hu, Can. Geotechn. J. 46, 1177 (2009)
H. Péron, L. Laloui, T. Hueckel, L.B. Hu, Eur. J. Environ. Civil Eng. 13, 869 (2009)
L.B. Hu, H. Péron, T. Hueckel, L. Laloui, Int. J. Numer. Anal. Methods Geomech. 37, 1761 (2013)
L.B. Hu, H. Péron, T. Hueckel, L. Laloui, Int. J. Numer. Anal. Methods Geomech. 37, 1782 (2013)
T. Hueckel, B. Mielniczuk, M.S. El Youssoufi, L.B. Hu, L. Laloui, Acta Geophys. 62, 1049 (2014)
T. Young, Philos. Trans. 95, 65 (1805)
P.S. Laplace, Traité de Mécanique Céleste, Vol. 4, Supplément au dixième livre du Traité de Mécanique Céleste (Courcier, Paris, France, 1805) pp. 1--79
L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Elsevier, 2007)
K. Hotta, K. Takeda, K. Iinoya, Powder Technol. 10, 231 (1974)
G. Lian, C. Thornton, M.J. Adams, Colloid Interface Sci. 161, 138 (1993)
C.H. Delaunay, J. Math. Pures Appl. 6, 309 (1841)
G. Gagneux, O. Millet, Transp. Porous Medion 105, 117 (2014)
P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)
C. Bourges-Monnier, M.E.R. Shanahan, Langmuir 11, 2820 (1995)
H.Y. Erbil, Cheminform 170, 67 (2012)
E. Bormashenko, Colloid Polym. Sci. 291, 339 (2013)
B. Mielniczuk, T. Hueckel, M.S. El Youssoufi, in Geo-Congress 2013, (ASCE, 2013) pp. 808--817, https://doi.org/10.1061/9780784412787.082
B. Mielniczuk, T. Hueckel, M.S. El Youssoufi, Granular Matter 16, 815 (2014)
B. Mielniczuk, T. Hueckel, M.S. El Youssoufi, Powder Technol. 283, 137 (2015)
N. Maeda, J.N. Israelachvili, M.M. Kohonen, Proc. Natl. Acad. Sci. U.S.A. 100, 803 (2003)
C.D. Willett, M.J. Adams, S.A. Johnson, J.P.K. Seville, Powder Technol. 130, 63 (2003)
R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)
H. Hu, R.G. Larson, Phys. Chem. B 106, 1334 (2002)
A. Marmur, Soft Matter 2, 12 (2006)
R.N. Wentzel, Ind. Eng. Chem. 28, 988 (1936)
A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)
M.E.R. Shanahan, Langmuir 11, 1041 (1995)
G. Whyman, E. Bormashenko, Langmuir 27, 8171 (2011)
E. Bormashenko, A. Musin, G. Whyman, M. Zinigrad, Langmuir 28, 3460 (2012)
H. Hu, R.G. Larson, Langmuir 21, 3963 (2005)
G. Berteloot, C.T. Pham, A. Daerr, F. Lequeux, L. Limat, EPL 83, 14003 (2008)
N. Murisic, L. Kondic, J. Fluid Mech. 679, 219 (2011)
S. Gaudet, G.H. McKinley, H.A. Stone, Phys. Fluids 8, 2568 (1996)
H. Hu, R.G. Larson, Langmuir 21, 3972 (2005)
C.M. Ma, T. Hueckel, Int. J. Eng. Sci. 30, 1567 (1992)
Y. Yang, L. Zhou, X. Du, Y. Yang, Langmuir 34, 3853 (2018)
B. Mielniczuk, O. Millet, G. Gagneux, M.S. El Youssoufi, Granular Matter 20, 14 (2018)
J.B. Bostwick, P.H. Steen, Annu. Rev. Fluid Mech. 47, 539 (2015)
P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Gouttes, bulles, perles et ondes (Belin, 2002)
B. Mielniczuk, L. Sabbatier, T. Hueckel, M.S. El Youssoufi, Acta Geophys. 62, 1087 (2014)
R. Scardovelli, S. Zaleski, Annu. Rev. Fluid, Mech. 31, 567 (1999)
S. Afkhami, S. Zaleski, M. Bussmann, J. Comput. Phys. 228, 5370 (2009)
P.T. Yue, C.F. Zhou, J.J. Feng, C.F. Ollivier-Gooch, H.H. Hu, J. Comput. Phys. 219, 47 (2006)
E. Ramé, S. Garoff, J. Colloid Interface Sci. 177, 234 (1996)
T.D. Blake, M. Bracke, Y.D. Shikhmurzaev, Phys. Fluids 11, 1995 (1999)
C. Huh, L.E. Scriven, J. Colloid Interface Sci. 35, 85 (1971)
V.E.B. Dussan., Annu. Rev. Fluid Mech. 11, 371 (1979)
Y.D. Shikhmurzaev, Physica D 217, 121 (2006)
J.F. Gerbeau, T. Lelievre, Comput. Methods Appl. Mech. Eng. 198, 644 (2009)
J.H. Snoeijer, B. Andreotti, Annu. Rev. Fluid Mech. 45, 269 (2013)
J.P. Gras, J.Y. Delenne, M.S. El Youssoufi, Granular Matter 15, 49 (2013)
J. Donea, S. Giuliani, J.P. Halleux, Comput. Methods Appl. Mech. Eng. 33, 689 (1982)
P.M. Knupp, Proceedings of the 7th International Meshing Roundtable'98 (Sandia National Laboratories, 1998) pp. 449--457
T.F. Irvine, P.E. Liley, Steam and Gas Tables with Computer Equations (Academic Press, New York, NY, 1984)
E. Keita, S.A. Koehler, P. Faure, D.A. Weitz, P. Coussot, Eur. Phys. J. E 39, 23 (2016)
J.C. Fernandez-Toledano, T.D. Blake, P. Lambert, J. De Coninck, Adv. Colloid Interface Sci. 245, 102 (2017)
A.Y. Rednikov, P. Colinet, Phys. Rev. Fluids 2, 124006 (2017)
B. Sobac, D. Brutin, in Droplet Wetting and Evaporation: From Pure to Complex Fluids, edited by B. Sobac, D. Brutin (Academic Press, 2015) pp. 103--114
S.J.S. Morris, J. Fluid Mech. 432, 1 (2001)
R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Phys. Rev. E 62, 756 (2000)
V.E.B. Dussan, S.H. Davis, J. Fluid Mech. 65, 71 (1974) part 1
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, S., Mielniczuk, B., Saïd El Youssoufi, M. et al. A note on evolution of pressure and flow within an evaporating capillary bridge. Eur. Phys. J. E 41, 140 (2018). https://doi.org/10.1140/epje/i2018-11748-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/i2018-11748-x