Skip to main content
Log in

Influence of confinement on flow and lubrication properties of a salt model ionic liquid investigated with molecular dynamics

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present a molecular dynamics study of the effects of confinement on the lubrication and flow properties of ionic liquids. We use a coarse-grained salt model description of ionic liquid as a lubricant confined between finite solid plates and subjected to two dynamic regimes: shear and cyclic loading. The impact of confinement on the ion arrangement and mechanical response of the system has been studied in detail and compared to static and bulk properties. The results have revealed that the wall slip has a profound influence on the force built-up as a response to mechanical deformation and that at the same time in the dynamic regime interaction with the walls represents a principal driving force governing the behaviour of ionic liquid in the gap. We also observe a transition from a dense liquid to an ordered and potentially solidified state of the ionic liquid taking place under variable normal loads and under shear.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Zhou, Y. Liang, W. Liu, Chem. Soc. Rev. 38, 2590 (2009)

    Article  Google Scholar 

  2. R. Hayes, G.G. Warr, R. Atkin, Phys. Chem. Chem. Phys. 12, 1709 (2010)

    Article  Google Scholar 

  3. O.Y. Fajardo, F. Bresme, A.A. Kornyshev, M. Urbakh, J. Phys. Chem. Lett. 6, 3998 (2015)

    Article  Google Scholar 

  4. O. Fajardo, F. Bresme, A. Kornyshev, M. Urbakh, Sci. Rep. 5, 7698 (2015)

    Article  ADS  Google Scholar 

  5. R. Capozza, A. Vanossi, A. Benassi, E. Tosatti, J. Chem. Phys. 142, 064707 (2015)

    Article  ADS  Google Scholar 

  6. Z. Wang, C. Priest, Langmuir 29, 11344 (2013)

    Article  Google Scholar 

  7. D.A. Beattie, R.M. Espinosa-Marzal, T.T. Ho, M.N. Popescu, J. Ralston, C.J. Richard, P.M. Sellapperumage, M. Krasowska, J. Phys. Chem. C 117, 23676 (2013)

    Article  Google Scholar 

  8. A.M. Smith, K.R. Lovelock, N.N. Gosvami, T. Welton, S. Perkin, Phys. Chem. Chem. Phys. 15, 15317 (2013)

    Article  Google Scholar 

  9. A.E. Somers, P.C. Howlett, D.R. MacFarlane, M. Forsyth, Lubricants 1, 3 (2013)

    Article  Google Scholar 

  10. K. Gkagkas, V. Ponnuchamy, M. Dasic, I. Stankovic, Tribol. Int. 113, 83 (2017)

    Article  Google Scholar 

  11. A.C.F. Mendonça, A.A.H. Pádua, P. Malfreyt, J. Chem. Theory Comput. 9, 1600 (2013)

    Article  Google Scholar 

  12. N. Voeltzel, A. Giuliani, N. Fillot, P. Vergne, L. Joly, Phys. Chem. Chem. Phys. 17, 23226 (2015)

    Article  Google Scholar 

  13. F. Federici Canova, H. Matsubara, M. Mizukami, K. Kurihara, A.L. Shluger, Phys. Chem. Chem. Phys. 16, 8247 (2014)

    Article  Google Scholar 

  14. K. Holmberg, P. Andersson, A. Erdemir, Tribol. Int. 47, 221 (2012)

    Article  Google Scholar 

  15. D.J. Hardy, J.E. Stone, K. Schulten, Parallel Comput. 35, 164 (2009)

    Article  Google Scholar 

  16. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  17. S. Viscardy, J. Servantie, P. Gaspard, J. Chem. Phys. 126, 184512 (2007)

    Article  ADS  Google Scholar 

  18. D.J. Evans, G. Morriss, Phys. Rev. A 30, 1528 (1984)

    Article  ADS  Google Scholar 

  19. P.J. Daivis, B. Todd, J. Chem. Phys. 124, 194103 (2006)

    Article  ADS  Google Scholar 

  20. J. Gao, W.D. Luedtke, U. Landman, Phys. Rev. Lett. 79, 705 (1997)

    Article  ADS  Google Scholar 

  21. J. Gao, W.D. Luedtke, D. Gourdon, M. Ruths, J.N. Israelachvili, U. Landman, J. Phys. Chem. B 108, 3410 (2004)

    Article  Google Scholar 

  22. S. Perkin, Phys. Chem. Chem. Phys. 14, 5052 (2012)

    Article  Google Scholar 

  23. R. Hayes, N. Borisenko, M.K. Tam, P.C. Howlett, F. Endres, R. Atkin, J. Phys. Chem. C 115, 6855 (2011)

    Article  Google Scholar 

  24. B. Bhushan, J.N. Israelachvili, U. Landman, Nature 374, 607 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miljan Dašić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dašić, M., Stanković, I. & Gkagkas, K. Influence of confinement on flow and lubrication properties of a salt model ionic liquid investigated with molecular dynamics. Eur. Phys. J. E 41, 130 (2018). https://doi.org/10.1140/epje/i2018-11740-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11740-6

Keywords

Navigation