Skip to main content
Log in

Effective temperature of active fluids and sheared soft glassy materials

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

An Erratum to this article was published on 14 February 2019

This article has been updated

Abstract.

The dynamics within active fluids, driven by internal activity of the self-propelled particles, is a subject of intense study in non-equilibrium physics. These systems have been explored using simulations, where the motion of a passive tracer particle is followed. Similar studies have been carried out for a soft glassy material that is driven by shearing its boundaries. In both types of systems the non-equilibrium motion have been quantified by defining a set of “effective temperatures”, using both the tracer particle kinetic energy and the fluctuation-dissipation relation. We demonstrate that these effective temperatures extracted from the many-body simulations fit analytical expressions that are obtained for a single active particle inside a visco-elastic fluid. This result provides testable predictions and suggests a unified description for the dynamics inside active systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 14 February 2019

    The authors were notified by their collaborators Golan Bel and Dan Wexler that the expression for the over-damped limit of the kinetic energy of the trapped particle, that they have used in the orignal paper, was in error. They provide the correct expressions in this erratum.

References

  1. L. Giomi, T.B. Liverpool, M.C. Marchetti, Phys. Rev. E 81, 051908 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  2. L. Berthier, J. Kurchan, Nat. Phys. 9, 310 (2013)

    Article  Google Scholar 

  3. D. Loi, S. Mossa, L.F. Cugliandolo, Phys. Rev. E 77, 051111 (2008)

    Article  ADS  Google Scholar 

  4. D. Loi, S. Mossa, L.F. Cugliandolo, Soft Matter 7, 10193 (2011)

    Article  ADS  Google Scholar 

  5. D. Levis, L. Berthier, EPL 111, 60006 (2015)

    Article  ADS  Google Scholar 

  6. L. Berthier, J.-L. Barrat, Phys. Rev. Lett. 89, 095702 (2002)

    Article  ADS  Google Scholar 

  7. L. Berthier, J.-L. Barrat, J. Chem. Phys. 116, 6228 (2002)

    Article  ADS  Google Scholar 

  8. H.A. Makse, J. Kurchan, Nature 415, 614 (2002)

    Article  ADS  Google Scholar 

  9. F.Q. Potiguar, H.A. Makse, Eur. Phys. J. E 19, 171 (2006)

    Article  Google Scholar 

  10. J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010)

    Article  ADS  Google Scholar 

  11. C. Song, P. Wang, H.A. Makse, Proc. Natl. Acad. Sci. U.S.A. 102, 2299 (2005)

    Article  ADS  Google Scholar 

  12. P. Wang, C. Song, C. Briscoe, H.A. Makse, Phys. Rev. E 77, 061309 (2008)

    Article  ADS  Google Scholar 

  13. P.C. Hohenberg, B.I. Shraiman, Physica D 37, 109 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  14. L.F. Cugliandolo, J. Kurchan, L. Peliti, Phys. Rev. E 55, 3898 (1997)

    Article  ADS  Google Scholar 

  15. L.F. Cugliandolo, J. Phys. A: Math. Theor. 44, 483001 (2011)

    Article  MathSciNet  Google Scholar 

  16. T. Shen, P.G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 101, 8547 (2004)

    Article  ADS  Google Scholar 

  17. S. Wang, P.G. Wolynes, J. Chem. Phys. 135, 051101 (2011)

    Article  ADS  Google Scholar 

  18. S. Wang, P.G. Wolynes, J. Chem. Phys. 138, 12A521 (2013)

    Article  Google Scholar 

  19. T. Lu, J. Hasty, P.G. Wolynes, Biophys. J. 91, 84 (2006)

    Article  ADS  Google Scholar 

  20. S.K. Nandi, N.S. Gov, Soft Matter 13, 7609 (2017)

    Article  ADS  Google Scholar 

  21. R. Mandal, P.J. Bhuyan, M. Rao, C. Dasgupta, Soft Matter 12, 6268 (2016)

    Article  ADS  Google Scholar 

  22. S.K. Nandi, R. Mandal, P.J. Bhuyan, C. Dasgupta, M. Rao, N.S. Gov, Proc. Natl. Acad. Sci. U.S.A. 115, 7688 (2018)

    Article  Google Scholar 

  23. E. Ben-Isaac, É. Fodor, P. Visco, F. van Wijland, N.S. Gov, Phys. Rev. E 92, 012716 (2015)

    Article  ADS  Google Scholar 

  24. M.K. Nandi, A. Banerjee, C. Dasgupta, S.M. Bhattacharyya, Phys. Rev. Lett. 119, 265502 (2017)

    Article  ADS  Google Scholar 

  25. E. Agoritsas, T. Maimbourg, F. Zamponi, arXiv preprint, arXiv:1808.00236 (2018)

  26. E. Ben-Isaac, Y. Park, G. Popescu, F.L. Brown, N.S. Gov, Y. Shokef, Phys. Rev. Lett. 106, 238103 (2011)

    Article  ADS  Google Scholar 

  27. Z. Preisler, M. Dijkstra, Soft Matter 12, 6043 (2016)

    Article  ADS  Google Scholar 

  28. G. Tarjus, D. Kivelson, P. Viot, J. Phys.: Condens. Matter 12, 6497 (2000)

    ADS  Google Scholar 

  29. T.S. Majmudar, R.P. Behringer, Nature 435, 1079 (2005)

    Article  ADS  Google Scholar 

  30. W. Losert, L. Bocquet, T. Lubensky, J.P. Gollub, Phys. Rev. Lett. 85, 1428 (2000)

    Article  ADS  Google Scholar 

  31. E. Flenner, G. Szamel, L. Berthier, Soft Matter 12, 7136 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Gov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, S.K., Gov, N.S. Effective temperature of active fluids and sheared soft glassy materials. Eur. Phys. J. E 41, 117 (2018). https://doi.org/10.1140/epje/i2018-11731-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11731-7

Keywords

Navigation