Particle-laden two-dimensional elastic turbulence

Abstract.

The aggregation properties of heavy inertial particles in the elastic turbulence regime of an Oldroyd-B fluid with periodic Kolmogorov mean flow are investigated by means of extensive numerical simulations in two dimensions. Both the small- and large-scale features of the resulting inhomogeneous particle distribution are examined, focusing on their connection with the properties of the advecting viscoelastic flow. We find that particles preferentially accumulate on thin highly elastic propagating structures and that this effect is the largest for intermediate values of particle inertia. We provide a quantitative characterization of this phenomenon that allows to relate it to the accumulation of particles in filamentary highly strained flow regions producing clusters of correlation dimension close to 1. At larger scales, particles are found to undergo turbophoretic-like segregation. Indeed, our results indicate a close relationship between the profiles of particle density and fluid velocity fluctuations. The large-scale inhomogeneity of the particle distribution is interpreted in the framework of a model derived in the limit of small, but finite, particle inertia. The qualitative characteristics of different observables are, to a good extent, independent of the flow elasticity. When increased, the latter is found, however, to slightly reduce the globally averaged degree of turbophoretic unmixing.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1

    A. Groisman, V. Steinberg, Nature 405, 53 (2000)

    ADS  Article  Google Scholar 

  2. 2

    A. Groisman, V. Steinberg, Nature 410, 905 (2001)

    ADS  Article  Google Scholar 

  3. 3

    L. Pan, A. Morozov, C. Wagner, P. Arratia, Phys. Rev. Lett. 110, 174502 (2013)

    ADS  Article  Google Scholar 

  4. 4

    A. Souliès, J. Aubril, C. Castelain, T. Burghelea, Phys. Fluids 29, 083102 (2017)

    ADS  Article  Google Scholar 

  5. 5

    P.C. Sousa, F.T. Pinho, M.A. Alves, Soft Matter 14, 1344 (2018)

    ADS  Article  Google Scholar 

  6. 6

    B. Traore, C. Castelain, T. Burghelea, J. Non-Newton. Fluid Mech. 223, 62 (2015)

    MathSciNet  Article  Google Scholar 

  7. 7

    W.M. Abed, R.D. Whalley, D.J.C. Dennis, R.J. Poole, J. Non-Newton. Fluid Mech. 231, 68 (2016)

    Article  Google Scholar 

  8. 8

    R.J. Poole, B. Budhiraja, A.R. Cain, P.A. Scott, J. Non-Newton. Fluid Mech. 177, 15 (2012)

    Article  Google Scholar 

  9. 9

    J. Mitchell, K. Lyons, A.M. Howe, A. Clarke, Soft Matter 12, 460 (2016)

    ADS  Article  Google Scholar 

  10. 10

    K.D. Squires, J.K. Eaton, Phys. Fluids A 3, 1169 (1991)

    ADS  Article  Google Scholar 

  11. 11

    F. Picano, G. Sardina, C.M. Casciola, Phys. Fluids 21, 093305 (2009)

    ADS  Article  Google Scholar 

  12. 12

    G. Sardina, P. Schlatter, L. Brandt, F. Picano, C.M. Casciola, J. Fluid Mech. 699, 50 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13

    F. De Lillo, M. Cencini, S. Musacchio, G. Boffetta, Phys. Fluids 28, 035104 (2016)

    ADS  Article  Google Scholar 

  14. 14

    D. Mitra, N.E.L. Haugen, I. Rogachevskii, Eur. Phys. J. Plus 133, 35 (2018)

    Article  Google Scholar 

  15. 15

    J. Bec, Phys. Fluids 15, L81 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16

    E. Calzavarini, M. Kerscher, D. Lohse, F. Toschi, J. Fluid Mech. 607, 13 (2008)

    ADS  Article  Google Scholar 

  17. 17

    F. Toschi, E. Bodenschatz, Annu. Rev. Fluid Mech. 41, 375 (2009)

    ADS  Article  Google Scholar 

  18. 18

    F. De Lillo, G. Boffetta, S. Musacchio, Phys. Rev. E 85, 036308 (2012)

    ADS  Article  Google Scholar 

  19. 19

    A. Nowbahar, G. Sardina, F. Picano, L. Brandt, J. Fluid Mech. 732, 706 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20

    E. Afik, V. Steinberg, Nat. Commun. 8, 468 (2017)

    ADS  Article  Google Scholar 

  21. 21

    B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Fluids (Wiley, New York, 1987)

  22. 22

    S. Berti, A. Bistagnino, G. Boffetta, A. Celani, S. Musacchio, Phys. Rev. E 77, 055306(R) (2008)

    ADS  Article  Google Scholar 

  23. 23

    S. Berti, G. Boffetta, Phys. Rev. E 82, 036314 (2010)

    ADS  Article  Google Scholar 

  24. 24

    E.L.C. VI, M. Plan, A. Gupta, D. Vincenzi, J.D. Gibbon, J. Fluid Mech. 822, R4 (2017)

    Article  Google Scholar 

  25. 25

    G. Boffetta, A. Celani, A. Mazzino, A. Puliafito, M. Vergassola, J. Fluid Mech. 523, 161 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  26. 26

    M.R. Maxey, J.J. Riley, Phys. Fluids 26, 883 (1983)

    ADS  Article  Google Scholar 

  27. 27

    R. Sureshkumar, A.N. Beris, J. Non-Newton. Fluid Mech. 60, 53 (1995)

    Article  Google Scholar 

  28. 28

    T. Vaithianathan, L.R. Collins, J. Comput. Phys. 187, 1 (2003)

    ADS  Article  Google Scholar 

  29. 29

    A. Fouxon, V. Lebedev, Phys. Fluids 15, 2060 (2003)

    ADS  Article  Google Scholar 

  30. 30

    E. De Angelis, C.M. Casciola, R. Piva, Physica D 241, 297 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  31. 31

    M.Q. Nguyen, A. Delache, S. Simoëns, W.J.T. Bos, M. El Hajem, Phys. Rev. Fluids 1, 083301 (2016)

    ADS  Article  Google Scholar 

  32. 32

    Y. Jun, V. Steinberg, Phys. Rev. Fluids 2, 103301 (2017)

    ADS  Article  Google Scholar 

  33. 33

    A. Gupta, R. Pandit, Phys. Rev. E 95, 033119 (2017)

    ADS  Article  Google Scholar 

  34. 34

    M.R. Maxey, J. Fluid Mech. 174, 441 (1987)

    ADS  Article  Google Scholar 

  35. 35

    J. Bec, L. Biferale, G. Boffetta, A. Celani, M. Cencini, A. Lanotte, S. Musacchio, F. Toschi, J. Fluid Mech. 550, 349 (2006)

    ADS  Article  Google Scholar 

  36. 36

    A. Okubo, Deep-Sea Res. 17, 445 (1970)

    Google Scholar 

  37. 37

    J. Weiss, Physica D 48, 273 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  38. 38

    K. Gustavvson, B. Mehlig, Adv. Phys. 65, 1 (2016)

    ADS  Article  Google Scholar 

  39. 39

    P. Grassberger, I. Procaccia, Phys. Rev. Lett. 50, 346 (1983)

    ADS  MathSciNet  Article  Google Scholar 

  40. 40

    G. Falkovich, A. Fouxon, M.G. Stepanov, Nature 419, 151 (2002)

    ADS  Article  Google Scholar 

  41. 41

    J. Bec, J. Fluid Mech. 528, 255 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  42. 42

    M. Caporaloni, F. Tampieri, F. Trombetti, O. Vittori, J. Atmos. Sci. 32, 565 (1975)

    ADS  Article  Google Scholar 

  43. 43

    J.W. Brooke, K. Kontomaris, T. Hanratty, J.B. McLaughlin, Phys. Fluids A 4, 825 (1992)

    ADS  Article  Google Scholar 

  44. 44

    S. Belan, I. Fouxon, G. Falkovich, Phys. Rev. Lett. 112, 234502 (2014)

    ADS  Article  Google Scholar 

  45. 45

    A. Guha, J. Aerosol Sci. 28, 1517 (1997)

    ADS  Article  Google Scholar 

  46. 46

    J.O. Hinze, Turbulence: An Introduction to its Mechanism and Theory (McGraw-Hill, New York, 1959)

  47. 47

    Y. Liu, V. Steinberg, EPL 90, 44002 (2010)

    ADS  Article  Google Scholar 

  48. 48

    A. Nowbahar, G. Sardina, F. Picano, L. Brandt, J. Fluid Mech. 732, 706 (2013)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Himani Garg.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garg, H., Calzavarini, E., Mompean, G. et al. Particle-laden two-dimensional elastic turbulence. Eur. Phys. J. E 41, 115 (2018). https://doi.org/10.1140/epje/i2018-11726-4

Download citation

Keywords

  • Topical issue: Flowing Matter, Problems and Applications