Skip to main content
Log in

Collective behavior of Vicsek particles without and with obstacles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In our work we have studied a two-dimensional suspension of finite-size Vicsek hard disks, whose time evolution follows an event-driven dynamics between subsequent time steps. Having compared its collective behaviour with the one expected for a system of scalar Vicsek point-like particles, we have analysed the effect of considering two possible bouncing rules between the disks: a Vicsek-like rule and a pseudo-elastic one, focusing on the order-disorder transition. Next, we have added to the two-dimensional suspension of hard-disk Vicsek particles disk-like passive obstacles of two types: either fixed in space or moving according to the same event-driven dynamics. We have performed a detailed analysis of the particles’ collective behaviour observed for both fixed and moving obstacles. In the fixed obstacles case, we have observed formation of clusters at low noise, in agreement with previous studies. When using moving passive obstacles, we found that that order of active particles is better destroyed as the drag of obstacles increases. In the no drag limit an interesting result was found: introduction of low drag passive particles can lead in some cases to a more ordered state of active flocking particles than what they show in bulk.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Frank, Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences (Springer, Berlin, 2003)

  2. C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)

    Article  ADS  Google Scholar 

  3. M.C. Marchetti, J.-F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)

    Article  ADS  Google Scholar 

  4. G.I. Menon, Active matter, in Rheology of Complex Fluids (Springer, 2010) pp. 193--218

  5. S.A. Mallory, C. Valeriani, A. Cacciuto, Annu. Rev. Phys. Chem. 69, 59 (2018)

    Article  ADS  Google Scholar 

  6. S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)

    Article  ADS  Google Scholar 

  7. M.E. Cates, J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219 (2015)

    Article  ADS  Google Scholar 

  8. J. Toner, Y. Tu, S. Ramaswamy, Ann. Phys. 318, 170 (2005)

    Article  ADS  Google Scholar 

  9. M.C. Marchetti, J.-F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)

    Article  ADS  Google Scholar 

  10. T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)

    Article  ADS  Google Scholar 

  11. M. Aldana, V. Dossetti, C. Huepe, V. Kenkre, H. Larralde, Phys. Rev. Lett. 98, 095702 (2007)

    Article  ADS  Google Scholar 

  12. J. Deseigne, O. Dauchot, H. Chaté, Phys. Rev. Lett. 105, 098001 (2010)

    Article  ADS  Google Scholar 

  13. C.A. Weber, T. Hanke, J. Deseigne, S. Lé, Phys. Rev. Lett. 110, 208001 (2013)

    Article  ADS  Google Scholar 

  14. G. Gré, Phys. Rev. Lett. 92, 025702 (2004)

    Article  ADS  Google Scholar 

  15. H. Chaté, Phys. Rev. E 77, 046113 (2008)

    Article  ADS  Google Scholar 

  16. F. Ginelli, Eur. Phys. J. ST 225, 2099 (2016)

    Article  Google Scholar 

  17. T. Vicsek, A. Cziró, Phys. Rev. Lett. 75, 1226 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  18. J. Gautrais, F. Ginelli, R. Fournier, S. Blanco, M. Soria, H. Chaté, Plos Comput. Biol. 8, e1002678 (2012)

    Article  ADS  Google Scholar 

  19. G. Gré, Phys. Rev. E 64, 011902 (2001)

    Article  ADS  Google Scholar 

  20. H. Chaté, Eur. Phys. J. B 64, 451 (2008)

    Article  ADS  Google Scholar 

  21. C. Valeriani, M. Li, J. Novosel, J. Arlt, D. Marenduzzo, Soft Matter 7, 5228 (2011)

    Article  ADS  Google Scholar 

  22. T. Schilling, T. Voigtmann, J. Chem. Phys. 147, 214905 (2017)

    Article  ADS  Google Scholar 

  23. E. Marsden, C. Valeriani, I. Sullivan, M. Cates, D. Marenduzzo, Soft Matter 10, 157 (2014)

    Article  ADS  Google Scholar 

  24. O. Pohl, H. Stark, Phys. Rev. Lett. 112, 238303 (2014)

    Article  ADS  Google Scholar 

  25. O. Chepizhko, F. Peruani, Phys. Rev. Lett. 111, 160604 (2013)

    Article  ADS  Google Scholar 

  26. O. Chepizhko, F. Peruani, Eur. Phys. J. ST 224, 1287 (2015)

    Article  Google Scholar 

  27. D. Yllanes, M. Leoni, M. Marchetti, New J. Phys. 19, 103026 (2017)

    Article  ADS  Google Scholar 

  28. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 31, 459 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  29. M.N. Bannerman, S. Strobl, A. Formella, T. Pöschel, Comput. Part. Mech. 1, 191 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Valeriani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, R., Alarcon, F., Rodriguez, D.R. et al. Collective behavior of Vicsek particles without and with obstacles. Eur. Phys. J. E 41, 91 (2018). https://doi.org/10.1140/epje/i2018-11706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11706-8

Keywords

Navigation