Collective behavior of Vicsek particles without and with obstacles

Abstract.

In our work we have studied a two-dimensional suspension of finite-size Vicsek hard disks, whose time evolution follows an event-driven dynamics between subsequent time steps. Having compared its collective behaviour with the one expected for a system of scalar Vicsek point-like particles, we have analysed the effect of considering two possible bouncing rules between the disks: a Vicsek-like rule and a pseudo-elastic one, focusing on the order-disorder transition. Next, we have added to the two-dimensional suspension of hard-disk Vicsek particles disk-like passive obstacles of two types: either fixed in space or moving according to the same event-driven dynamics. We have performed a detailed analysis of the particles’ collective behaviour observed for both fixed and moving obstacles. In the fixed obstacles case, we have observed formation of clusters at low noise, in agreement with previous studies. When using moving passive obstacles, we found that that order of active particles is better destroyed as the drag of obstacles increases. In the no drag limit an interesting result was found: introduction of low drag passive particles can lead in some cases to a more ordered state of active flocking particles than what they show in bulk.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1

    S. Frank, Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences (Springer, Berlin, 2003)

  2. 2

    C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)

    ADS  Article  Google Scholar 

  3. 3

    M.C. Marchetti, J.-F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)

    ADS  Article  Google Scholar 

  4. 4

    G.I. Menon, Active matter, in Rheology of Complex Fluids (Springer, 2010) pp. 193--218

  5. 5

    S.A. Mallory, C. Valeriani, A. Cacciuto, Annu. Rev. Phys. Chem. 69, 59 (2018)

    ADS  Article  Google Scholar 

  6. 6

    S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)

    ADS  Article  Google Scholar 

  7. 7

    M.E. Cates, J. Tailleur, Annu. Rev. Condens. Matter Phys. 6, 219 (2015)

    ADS  Article  Google Scholar 

  8. 8

    J. Toner, Y. Tu, S. Ramaswamy, Ann. Phys. 318, 170 (2005)

    ADS  Article  Google Scholar 

  9. 9

    M.C. Marchetti, J.-F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)

    ADS  Article  Google Scholar 

  10. 10

    T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)

    ADS  Article  Google Scholar 

  11. 11

    M. Aldana, V. Dossetti, C. Huepe, V. Kenkre, H. Larralde, Phys. Rev. Lett. 98, 095702 (2007)

    ADS  Article  Google Scholar 

  12. 12

    J. Deseigne, O. Dauchot, H. Chaté, Phys. Rev. Lett. 105, 098001 (2010)

    ADS  Article  Google Scholar 

  13. 13

    C.A. Weber, T. Hanke, J. Deseigne, S. Lé, Phys. Rev. Lett. 110, 208001 (2013)

    ADS  Article  Google Scholar 

  14. 14

    G. Gré, Phys. Rev. Lett. 92, 025702 (2004)

    ADS  Article  Google Scholar 

  15. 15

    H. Chaté, Phys. Rev. E 77, 046113 (2008)

    ADS  Article  Google Scholar 

  16. 16

    F. Ginelli, Eur. Phys. J. ST 225, 2099 (2016)

    Article  Google Scholar 

  17. 17

    T. Vicsek, A. Cziró, Phys. Rev. Lett. 75, 1226 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    J. Gautrais, F. Ginelli, R. Fournier, S. Blanco, M. Soria, H. Chaté, Plos Comput. Biol. 8, e1002678 (2012)

    ADS  Article  Google Scholar 

  19. 19

    G. Gré, Phys. Rev. E 64, 011902 (2001)

    ADS  Article  Google Scholar 

  20. 20

    H. Chaté, Eur. Phys. J. B 64, 451 (2008)

    ADS  Article  Google Scholar 

  21. 21

    C. Valeriani, M. Li, J. Novosel, J. Arlt, D. Marenduzzo, Soft Matter 7, 5228 (2011)

    ADS  Article  Google Scholar 

  22. 22

    T. Schilling, T. Voigtmann, J. Chem. Phys. 147, 214905 (2017)

    ADS  Article  Google Scholar 

  23. 23

    E. Marsden, C. Valeriani, I. Sullivan, M. Cates, D. Marenduzzo, Soft Matter 10, 157 (2014)

    ADS  Article  Google Scholar 

  24. 24

    O. Pohl, H. Stark, Phys. Rev. Lett. 112, 238303 (2014)

    ADS  Article  Google Scholar 

  25. 25

    O. Chepizhko, F. Peruani, Phys. Rev. Lett. 111, 160604 (2013)

    ADS  Article  Google Scholar 

  26. 26

    O. Chepizhko, F. Peruani, Eur. Phys. J. ST 224, 1287 (2015)

    Article  Google Scholar 

  27. 27

    D. Yllanes, M. Leoni, M. Marchetti, New J. Phys. 19, 103026 (2017)

    ADS  Article  Google Scholar 

  28. 28

    B.J. Alder, T.E. Wainwright, J. Chem. Phys. 31, 459 (1959)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29

    M.N. Bannerman, S. Strobl, A. Formella, T. Pöschel, Comput. Part. Mech. 1, 191 (2014)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chantal Valeriani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martinez, R., Alarcon, F., Rodriguez, D.R. et al. Collective behavior of Vicsek particles without and with obstacles. Eur. Phys. J. E 41, 91 (2018). https://doi.org/10.1140/epje/i2018-11706-8

Download citation

Keywords

  • Topical issue: Advances in Computational Methods for Soft Matter Systems