Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. The European Physical Journal E
  3. Article

Quasilocalized states of self stress in packing-derived networks

  • Regular Article
  • Open access
  • Published: 21 August 2018
  • volume 41, Article number: 93 (2018)
Download PDF

You have full access to this open access article

The European Physical Journal E Aims and scope Submit manuscript
Quasilocalized states of self stress in packing-derived networks
Download PDF
  • Edan Lerner1 

Cite this article

Abstract.

States of self stress (SSS) are assignments of forces on the edges of a network that satisfy mechanical equilibrium in the absence of external forces. In this work we show that a particular class of quasilocalized SSS in packing-derived networks, first introduced by D.M. Sussman, C.P. Goodrich, A.J. Liu (Soft Matter 12, 3982 (2016)), are characterized by a decay length that diverges as \( 1/\sqrt{z_c-z}\) , where \( z\) is the mean connectivity of the network, and \( z_c \equiv 4\) is the Maxwell threshold in two dimensions, at odds with previous claims. Our results verify the previously proposed analogy between quasilocalized SSS and the mechanical response to a local dipolar force in random networks of relaxed Hookean springs. We show that the normalization factor that distinguishes between quasilocalized SSS and the response to a local dipole constitutes a measure of the mechanical coupling of the forced spring to the elastic network in which it is embedded. We further demonstrate that the lengthscale that characterizes quasilocalized SSS does not depend on its associated degree of mechanical coupling, but instead only on the network connectivity.

Graphical abstract

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  2. M. van Hecke, J. Phys.: Condens. Matter 22, 033101 (2010)

    ADS  Google Scholar 

  3. A.J. Liu, S.R. Nagel, Annu. Rev. Condens. Matter Phys. 1, 347 (2010)

    Article  ADS  Google Scholar 

  4. M. Wyart, Ann. Phys. (Paris) 30, 1 (2005)

    Google Scholar 

  5. W.G. Ellenbroek, Z. Zeravcic, W. van Saarloos, M. van Hecke, EPL 87, 34004 (2009)

    Article  ADS  Google Scholar 

  6. E. DeGiuli, A. Laversanne-Finot, G. Düring, E. Lerner, M. Wyart, Soft Matter 10, 5628 (2014)

    Article  ADS  Google Scholar 

  7. E. DeGiuli, E. Lerner, M. Wyart, J. Chem. Phys. 142, 164503 (2015)

    Article  ADS  Google Scholar 

  8. P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, F. Zamponi, Nat. Commun. 5, 3725 (2014)

    Article  ADS  Google Scholar 

  9. P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, F. Zamponi, J. Stat. Mech. 2014, P10009 (2014)

    Article  Google Scholar 

  10. L. Berthier, D. Coslovich, A. Ninarello, M. Ozawa, Phys. Rev. Lett. 116, 238002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Wyart, S.R. Nagel, T.A. Witten, Europhys. Lett. 72, 486 (2005)

    Article  ADS  Google Scholar 

  12. M. Mailman, B. Chakraborty, J. Stat. Mech. 2011, L07002 (2011)

    Article  Google Scholar 

  13. G. Düring, E. Lerner, M. Wyart, Soft Matter 9, 146 (2013)

    Article  ADS  Google Scholar 

  14. C.P. Goodrich, W.G. Ellenbroek, A.J. Liu, Soft Matter 9, 10993 (2013)

    Article  ADS  Google Scholar 

  15. W.G. Ellenbroek, M. van Hecke, W. van Saarloos, Phys. Rev. E 80, 061307 (2009)

    Article  ADS  Google Scholar 

  16. K. Karimi, C.E. Maloney, Phys. Rev. E 92, 022208 (2015)

    Article  ADS  Google Scholar 

  17. K. Baumgarten, D. Vå, Phys. Rev. Lett. 118, 098001 (2017)

    Article  ADS  Google Scholar 

  18. D. Hexner, A.J. Liu, S.R. Nagel, Soft Matter 14, 312 (2018)

    Article  ADS  Google Scholar 

  19. L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. Lett. 95, 098301 (2005)

    Article  ADS  Google Scholar 

  20. M. Wyart, EPL 89, 64001 (2010)

    Article  ADS  Google Scholar 

  21. A. Ikeda, L. Berthier, G. Biroli, J. Chem. Phys. 138, 12A507 (2013)

    Article  Google Scholar 

  22. S.S. Schoenholz, C.P. Goodrich, O. Kogan, A.J. Liu, S.R. Nagel, Soft Matter 9, 11000 (2013)

    Article  ADS  Google Scholar 

  23. E. Lerner, E. DeGiuli, G. Düring, M. Wyart, Soft Matter 10, 5085 (2014)

    Article  ADS  Google Scholar 

  24. G. Düring, E. Lerner, M. Wyart, Phys. Rev. E 89, 022305 (2014)

    Article  ADS  Google Scholar 

  25. D. Hexner, A.J. Liu, S.R. Nagel, arXiv preprint, arXiv:1710.07317 (2017)

  26. M. Bouzid, M. Trulsson, P. Claudin, E. Clément, B. Andreotti, Phys. Rev. Lett. 111, 238301 (2013)

    Article  ADS  Google Scholar 

  27. C. Calladine, Int. J. Solids Struct. 14, 161 (1978)

    Article  Google Scholar 

  28. J.H. Snoeijer, T.J.H. Vlugt, M. van Hecke, W. van Saarloos, Phys. Rev. Lett. 92, 054302 (2004)

    Article  ADS  Google Scholar 

  29. C.L. Kane, T.C. Lubensky, Nat. Phys. 10, 39 (2014)

    Article  Google Scholar 

  30. J. Paulose, B.G.-g. Chen, V. Vitelli, Nat. Phys. 11, 153 (2015)

    Article  Google Scholar 

  31. D.M. Sussman, C.P. Goodrich, A.J. Liu, Soft Matter 12, 3982 (2016)

    Article  ADS  Google Scholar 

  32. W.G. Ellenbroek, V.F. Hagh, A. Kumar, M.F. Thorpe, M. van Hecke, Phys. Rev. Lett. 114, 135501 (2015)

    Article  ADS  Google Scholar 

  33. E. Lerner, Soft Matter 13, 1530 (2017)

    Article  ADS  Google Scholar 

  34. D.M. Sussman, D. Hexner, C.P. Goodrich, A.J. Liu, Soft Matter 13, 1532 (2017)

    Article  ADS  Google Scholar 

  35. E. Lerner, G. Düring, M. Wyart, Proc. Natl. Acad. Sci. U.S.A. 109, 4798 (2012)

    Article  ADS  Google Scholar 

  36. J.F. Lutsko, J. Appl. Phys. 65, 2991 (1989)

    Article  ADS  Google Scholar 

  37. L. Yan, G. Düring, M. Wyart, Proc. Natl. Acad. Sci. U.S.A. 110, 6307 (2013)

    Article  ADS  Google Scholar 

  38. E. Lerner, G. Düring, M. Wyart, Comput. Phys. Commun. 184, 628 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  39. D. Hexner, A.J. Liu, S.R. Nagel, Phys. Rev. E 97, 063001 (2018)

    Article  ADS  Google Scholar 

  40. C.P. Goodrich, A.J. Liu, S.R. Nagel, Phys. Rev. Lett. 114, 225501 (2015)

    Article  ADS  Google Scholar 

  41. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Phys. Rev. Lett. 97, 170201 (2006)

    Article  ADS  Google Scholar 

  42. C.P. Goodrich, S. Dagois-Bohy, B.P. Tighe, M. van Hecke, A.J. Liu, S.R. Nagel, Phys. Rev. E 90, 022138 (2014)

    Article  ADS  Google Scholar 

  43. E. Lerner, G. Düring, M. Wyart, Soft Matter 9, 8252 (2013)

    Article  ADS  Google Scholar 

  44. P. Charbonneau, E.I. Corwin, G. Parisi, F. Zamponi, Phys. Rev. Lett. 114, 125504 (2015)

    Article  ADS  Google Scholar 

  45. E. Lerner, E. Bouchbinder, J. Chem. Phys. 148, 214502 (2018)

    Article  ADS  Google Scholar 

  46. C.P. Goodrich, A.J. Liu, S.R. Nagel, Phys. Rev. Lett. 109, 095704 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands

    Edan Lerner

Authors
  1. Edan Lerner
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Edan Lerner.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerner, E. Quasilocalized states of self stress in packing-derived networks. Eur. Phys. J. E 41, 93 (2018). https://doi.org/10.1140/epje/i2018-11705-9

Download citation

  • Received: 07 July 2017

  • Accepted: 24 July 2018

  • Published: 21 August 2018

  • DOI: https://doi.org/10.1140/epje/i2018-11705-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Flowing Matter: Granular Matter
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature