Dislocations dynamics during the nonlinear creep of a homeotropic sample of smectic-A liquid crystal

Abstract.

New creep experiments under sinusoidal compression/dilation deformation of a homeotropic sample of smectic-A liquid crystal (8CB) show that its response is nonlinear at very small amplitude of deformation. This behavior is explained by taking into account the crossing between the edge dislocations that climb parallel to the layers and the screw dislocations joining the two surfaces limiting the sample. The activation energy of the crossing process and the density of the screw dislocations as a function of the sample thickness are estimated experimentally.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1

    P. Oswald, P. Pieranski, Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, CRC Press, Boca Raton, 2006)

  2. 2

    R. Bartolino, G. Durand, Phys. Rev. Lett. 39, 1346 (1977)

    ADS  Article  Google Scholar 

  3. 3

    R.B. Meyer, B. Stebler, S.T. Lagerwall, Phys. Rev. Lett. 41, 1393 (1978)

    ADS  Article  Google Scholar 

  4. 4

    J. Milette, V. Toader, L. Reven, R.B. Lennox, J. Mater. Chem. 21, 9043 (2011)

    Article  Google Scholar 

  5. 5

    P. Oswald, J. Milette, S. Relaix, L. Reven, A. Dequidt, L. Lejček, EPL 103, 46004 (2013)

    ADS  Article  Google Scholar 

  6. 6

    P. Oswald, L. Lejček, Eur. Phys. J. E 40, 84 (2017)

    Article  Google Scholar 

  7. 7

    M. Kléman, Philos. Mag. 34, 79 (1976)

    ADS  Article  Google Scholar 

  8. 8

    L. Bourdon, Contribution à l'étude des défauts dans les phases smectiques à couches liquides, M.Sc. Thesis, University of Paris XI, Orsay, 1980

  9. 9

    K. Ishikawa, T. Uemura, H. Takezoe, A. Fukuda, Jpn. J. Appl. Phys. 23, L666 (1984)

    ADS  Article  Google Scholar 

  10. 10

    M. Kléman, C.E. Williams, J.M. Costello, T. Gulik-Krzywicki, Philos. Mag. 35, 33 (1977)

    ADS  Article  Google Scholar 

  11. 11

    M. Allain, Europhys. Lett. 2, 597 (1986)

    ADS  Article  Google Scholar 

  12. 12

    I. Lelidis, C. Blanc, M. Kléman, Phys. Rev. E 74, 051710 (2006)

    ADS  Article  Google Scholar 

  13. 13

    P. Oswald, D. Lefur, C.R. Acad. Sci. Paris, Série II 297, 699 (1983)

    Google Scholar 

  14. 14

    L. Bourdon, M. Kléman, L. Lejček, D. Taupin, J. Phys. (Paris) 42, 261 (1981)

    Article  Google Scholar 

  15. 15

    P. Oswald, M. Kléman, J. Phys. (Paris) Lett. 45, L319 (1984)

    Article  Google Scholar 

  16. 16

    R.A. Herke, N.A. Clark, M.A. Handschy, Phys. Rev. E 56, 3028 (1997)

    ADS  Article  Google Scholar 

  17. 17

    I. Lelidis, M. Kléman, J.L. Martin, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 330, 457 (1999)

    Article  Google Scholar 

  18. 18

    I. Lelidis, M. Kléman, J.L. Martin, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 351, 187 (2000)

    Article  Google Scholar 

  19. 19

    C. Blanc, N. Zuodar, I. Lelidis, M. Kléman, J.L. Martin, Phys. Rev. E 69, 011705 (2004)

    ADS  Article  Google Scholar 

  20. 20

    P. Oswald, Phys. Rev. E 92, 062508 (2005) Note here that a factor of 2 is missing in the denominator of eq. (37) of this paper

    ADS  Article  Google Scholar 

  21. 21

    R. Ribotta, G. Durand, J. Phys. (Paris) 38, 179 (1977)

    Article  Google Scholar 

  22. 22

    N.A. Clark, A.J. Hurd, J. Phys. (Paris) 43, 1159 (1982)

    Article  Google Scholar 

  23. 23

    J.C. Géminard, R. Holyst, P. Oswald, Phys. Rev. Lett. 78, 1924 (1997)

    ADS  Article  Google Scholar 

  24. 24

    F. Picano, R. Holyst, P. Oswald, Phys. Rev. E 62, 3747 (2000)

    ADS  Article  Google Scholar 

  25. 25

    P. Oswald, F. Picano, F. Caillier, Phys. Rev. E 68, 061701 (2003)

    ADS  Article  Google Scholar 

  26. 26

    A. Żywociński, F. Picano, P. Oswald, J.C. Géminard, Phys. Rev. E 62, 8133 (2000)

    ADS  Article  Google Scholar 

  27. 27

    J. Friedel, Dislocations (Pergamon Press, New York, 1967) p. 224

  28. 28

    A.J.E. Foreman, M.J. Makin, Philos. Mag. 14, 911 (1966)

    ADS  Article  Google Scholar 

  29. 29

    F.R.N. Nabarro, Theory of Crystal Dislocations (Dover, New York, 1987)

  30. 30

    H.A. Kramers, Physica (Utrecht) 7, 284 (1940)

    ADS  MathSciNet  Article  Google Scholar 

  31. 31

    P. Oswald, C.R. Acad. Sci. Paris, Série II 296, 1385 (1983)

    Google Scholar 

  32. 32

    P. Oswald, Dynamique des dislocations dans les smectiques A et B, D.Sc. Thesis, University of Paris XI, Orsay, 1985

  33. 33

    L. Lejček, Liq. Cryst. 1, 473 (1986)

    Article  Google Scholar 

  34. 34

    C. Zhang, O.D. Lavrentovich, A. Jàkli, Proc. SPIE 9769, 97690D-1 (2016)

    Article  Google Scholar 

  35. 35

    M. Kléman, J. Phys. (Paris) 35, 595 (1974)

    Article  Google Scholar 

  36. 36

    P.V. Dolganov, E.I. Kats, V.K. Dolganov, JETP Lett. 106, 229 (2017)

    ADS  Article  Google Scholar 

  37. 37

    E. Dubois-Violette, E. Guazzelli, J. Prost, Philos. Mag. 48, 727 (1983)

    ADS  Article  Google Scholar 

  38. 38

    C. Blanc, private communication

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Oswald.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oswald, P., Poy, G. Dislocations dynamics during the nonlinear creep of a homeotropic sample of smectic-A liquid crystal. Eur. Phys. J. E 41, 73 (2018). https://doi.org/10.1140/epje/i2018-11684-9

Download citation

Keywords

  • Soft Matter: Liquid crystals