Brownian motion near an elastic cell membrane: A theoretical study

Regular Article
  • 28 Downloads
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

Elastic confinements are an important component of many biological systems and dictate the transport properties of suspended particles under flow. In this paper, we review the Brownian motion of a particle moving in the vicinity of a living cell whose membrane is endowed with a resistance towards shear and bending. The analytical calculations proceed through the computation of the frequency-dependent mobility functions and the application of the fluctuation-dissipation theorem. Elastic interfaces endow the system with memory effects that lead to a long-lived anomalous subdiffusive regime of nearby particles. In the steady limit, the diffusional behavior approaches that near a no-slip hard wall. The analytical predictions are validated and supplemented with boundary-integral simulations.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

References

  1. 1.
    R. Langer, Nature 392, 5 (1998)Google Scholar
  2. 2.
    S. Naahidi, M. Jafari, F. Edalat, K. Raymond, A. Khademhosseini, P. Chen, J. Control. Release 166, 182 (2013)CrossRefGoogle Scholar
  3. 3.
    H. Al-Obaidi, A.T. Florence, J. Drug Deliv. Sci. Technol. 30, 266 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Liu, T. Wei, J. Zhao, Y. Huang, H. Deng, A. Kumar, C. Wang, Z. Liang, X. Ma, X.-J. Liang, Biomaterials 91, 44 (2016)CrossRefGoogle Scholar
  5. 5.
    D.K. Kirui, D.A. Rey, C.A. Batt, Nanotechnology 21, 105105 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    M. Nurunnabi, Z. Khatun, G.R. Reeck, D.Y. Lee, Y.-K. Lee, ACS Appl. Mater. Interfaces 6, 12413 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Xia, Nat. Mater. 7, 758 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    I.I. Slowing, B.G. Trewyn, S. Giri, V.-Y. Lin, Adv. Funct. Mater. 17, 1225 (2007)CrossRefGoogle Scholar
  9. 9.
    J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign, Adv. Drug Deliv. Rev. 99, 28 (2016)CrossRefGoogle Scholar
  10. 10.
    G.J. Doherty, H.T. McMahon, Annu. Rev. Biochem. 78, 857 (2009)CrossRefGoogle Scholar
  11. 11.
    A. Meinel, B. Tränkle, W. Römer, A. Rohrbach, Soft Matter 10, 3667 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    J. Agudo-Canalejo, R. Lipowsky, ACS Nano 9, 3704 (2015)CrossRefGoogle Scholar
  13. 13.
    G.G. Stokes, On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Vol. 9 (Pitt Press, 1851)Google Scholar
  14. 14.
    H. Löwen, Phys. Rep. 237, 249 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    C. Allain, M. Cloitre, M. Wafra, Phys. Rev. Lett. 74, 1478 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    H. Tanaka, T. Araki, Phys. Rev. Lett. 85, 1338 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    L. Isa, R. Besseling, A.N. Morozov, W.C.K. Poon, Phys. Rev. Lett. 102, 058302 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    M. Glässl, M. Hilt, W. Zimmermann, Eur. Phys. J. E 32, 265 (2010)CrossRefGoogle Scholar
  19. 19.
    U. Zimmermann, F. Smallenburg, H. Löwen, J. Phys.: Condens. Matter 28, 244019 (2016)ADSGoogle Scholar
  20. 20.
    S.M. Stavis, J.B. Edel, K.T. Samiee, H.G. Craighead, Lab Chip 5, 337 (2005)CrossRefGoogle Scholar
  21. 21.
    D. Huh, K.L. Mills, X. Zhu, M.A. Burns, M.D. Thouless, S. Takayama, Nat. Mater. 6, 424 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    H.A. Lorentz, Abh. Theor. Phys. 1, 23 (1907)Google Scholar
  23. 23.
    H. Brenner, Chem. Eng. Sci. 16, 242 (1961)CrossRefGoogle Scholar
  24. 24.
    M.E. O’Neill, K. Stewartson, J. Fluid Mech. 27, 705 (1967)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A.J. Goldman, R.G. Cox, H. Brenner, Chem. Eng. Sci. 22, 637 (1967)CrossRefGoogle Scholar
  26. 26.
    G.S. Perkins, R.B. Jones, Physica A 171, 575 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    G.S. Perkins, R.B. Jones, Physica A 189, 447 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    S. Wakiya, J. Phys. Soc. Jpn. 19, 1401 (1964)ADSCrossRefGoogle Scholar
  29. 29.
    C.W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik (Akademische Verlagsgesellschaft M.B.H., 1927)Google Scholar
  30. 30.
    H. Faxén, Einwirkung der Gefässwände auf den Widerstand gegen die Bewegung einer kleinen Kugel in einer zähen Flüssigkeit, PhD Thesis, Uppsala University, Uppsala, Sweden (1921)Google Scholar
  31. 31.
    H. Faxén, Ann. Phys. 373, 89 (1922)CrossRefGoogle Scholar
  32. 32.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, Vol. 1 (Springer Science & Business Media, 2012)Google Scholar
  33. 33.
    B.P. Ho, L.G. Leal, J. Fluid Mech. 65, 365 (1974)ADSCrossRefGoogle Scholar
  34. 34.
    N. Liron, S. Mochon, J. Eng. Math. 10, 287 (1976)CrossRefGoogle Scholar
  35. 35.
    S. Bhattacharya, J. Bławzdziewicz, J. Math. Phys. 43, 5720 (2002)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    B.U. Felderhof, J. Chem. Phys. 124, 054111 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    B.U. Felderhof, J. Chem. Phys. 133, 074707 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    B.U. Felderhof, J. Fluid Mech. 656, 223 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    S. Bhattacharya, J. Bławzdziewicz, E. Wajnryb, J. Comput. Phys. 212, 718 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    J.W. Swan, J.F. Brady, Phys. Fluids 22, 103301 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    P. Ganatos, S. Weinbaum, R. Pfeffer, J. Fluid Mech. 99, 739 (1980)ADSCrossRefGoogle Scholar
  42. 42.
    P. Ganatos, R. Pfeffer, S. Weinbaum, J. Fluid Mech. 99, 755 (1980)ADSCrossRefGoogle Scholar
  43. 43.
    O. Sano, H. Hasimoto, J. Phys. Soc. Jpn. 40, 884 (1976)ADSCrossRefGoogle Scholar
  44. 44.
    R.G.M. van Der Sman, J. Colloid Interface Sci. 351, 43 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    A. Meyer, A. Marshall, B.G. Bush, E.M. Furst, J. Rheol. 50, 77 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    N. Khatibzadeh, A.B. Stilgoe, A.A.M. Bui, Y. Rocha, G.M. Cruz, V. Loke, L.Z. Shi, T.A. Nieminen, H. Rubinsztein-Dunlop, M.W. Berns, Sci. Rep. 4, 6866 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    B. Lin, J. Yu, S.A. Rice, Phys. Rev. E 62, 3909 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    E.R. Dufresne, D. Altman, D.G. Grier, Europhys. Lett. 53, 264 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    E. Schäffer, S.F. Nørrelykke, J. Howard, Langmuir 23, 3654 (2007)CrossRefGoogle Scholar
  50. 50.
    P.P. Lele, J.W. Swan, J.F. Brady, N.J. Wagner, E.M. Furst, Soft Matter 7, 6844 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    B. Tränkle, M. Speidel, A. Rohrbach, Phys. Rev. E 86, 021401 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    J. Mo, A. Simha, M.G. Raizen, Phys. Rev. E 92, 062106 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    J. Mo, Short Timescale Brownian Motion and Applications, PhD Thesis, University of Texas at Austin, USA (2015)Google Scholar
  54. 54.
    C. Zahn, S. Keller, M. Toro-Nahuelpan, P. Dorscht, W. Gross, M. Laumann, S. Gekle, W. Zimmermann, D. Schüler, H. Kress, Sci. Rep. 7, 3558 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    K.D. Kihm, A. Banerjee, C.K. Choi, T. Takagi, Exp. Fluids 37, 811 (2004)CrossRefGoogle Scholar
  56. 56.
    R. Sadr, H. Li, M. Yoda, Exp. Fluids 38, 90 (2005)CrossRefGoogle Scholar
  57. 57.
    B. Cui, H. Diamant, B. Lin, Phys. Rev. Lett. 89, 188302 (2002)ADSCrossRefGoogle Scholar
  58. 58.
    H.B. Eral, J.M. Oh, D. van den Ende, F. Mugele, M.H.G. Duits, Langmuir 26, 16722 (2010)CrossRefGoogle Scholar
  59. 59.
    P. Sharma, S. Ghosh, S. Bhattacharya, Appl. Phys. Lett. 97, 104101 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    J.C. Benavides-Parra, M.D. Carbajal-Tinoco, A. Conde-Gallardo, E. Ayón-Beato, J.J. Godina-Nava, M. Hernández-Contreras, L. Velasco-Sevilla, Brownian motion of a colloidal particle near a soft interface, AIP Conf. Proc., Vol. 1420 (AIP, 2012) pp. 128--132Google Scholar
  61. 61.
    B. Tränkle, Interaktionsdynamik kolloidaler Partikel in beschränkten Volumina, PhD Thesis, Albert-Ludwigs-Universität Freiburg im Breisgau (2013)Google Scholar
  62. 62.
    S.L. Dettmer, S. Pagliara, K. Misiunas, U.F. Keyser, Phys. Rev. E 89, 062305 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    B. Tränkle, D. Ruh, A. Rohrbach, Soft Matter 12, 2729 (2016)ADSCrossRefGoogle Scholar
  64. 64.
    J.C. Benavides-Parra, D. Jacinto-Méndez, G. Brotons, M.D. Carbajal-Tinoco, J. Chem. Phys. 145, 114902 (2016)ADSCrossRefGoogle Scholar
  65. 65.
    T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 75, 2770 (1995)ADSCrossRefGoogle Scholar
  66. 66.
    L. Lobry, N. Ostrowsky, Phys. Rev. B 53, 12050 (1996)ADSCrossRefGoogle Scholar
  67. 67.
    M.A. Bevan, D.C. Prieve, J. Chem. Phys. 113, 1228 (2000)ADSCrossRefGoogle Scholar
  68. 68.
    A.R. Clapp, R.B. Dickinson, Langmuir 17, 2182 (2001)CrossRefGoogle Scholar
  69. 69.
    A. Banerjee, K.D. Kihm, Phys. Rev. E 72, 042101 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    V.N. Michailidou, G. Petekidis, J.W. Swan, J.F. Brady, Phys. Rev. Lett. 102, 068302 (2009)ADSCrossRefGoogle Scholar
  71. 71.
    B. Cichocki, E. Wajnryb, J. Bławzdziewicz, J.K.G. Dhont, P.R. Lang, J. Chem. Phys. 132, 074704 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    M. Lisicki, B. Cichocki, J.K.G. Dhont, P.R. Lang, J. Chem. Phys. 136, 204704 (2012)ADSCrossRefGoogle Scholar
  73. 73.
    S.A. Rogers, M. Lisicki, B. Cichocki, J.K.G. Dhont, P.R. Lang, Phys. Rev. Lett. 109, 098305 (2012)ADSCrossRefGoogle Scholar
  74. 74.
    V.N. Michailidou, J.W. Swan, J.F. Brady, G. Petekidis, J. Chem. Phys. 139, 164905 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    W. Wang, P. Huang, Phys. Fluids 26, 092003 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    M. Lisicki, B. Cichocki, S.A. Rogers, J.K.G. Dhont, P.R. Lang, Soft Matter 10, 4312 (2014)ADSCrossRefGoogle Scholar
  77. 77.
    M. Lisicki, Evanescent Wave Dynamic Light Scattering by Optically Anisotropic Brownian Particles, PhD Thesis, University of Warsaw (2015)Google Scholar
  78. 78.
    Y. Liu, Near-Wall Dynamics of Colloidal Particles Studied by Evanescent Wave Dynamic Light Scattering, PhD Thesis, Heinrich-Heine-Universität Düsseldorf (2017)Google Scholar
  79. 79.
    P. Huang, K.S. Breuer, Phys. Rev. E 76, 046307 (2007)ADSCrossRefGoogle Scholar
  80. 80.
    E. Lauga, T.M. Squires, Phys. Fluids 17, 103102 (2005)ADSCrossRefGoogle Scholar
  81. 81.
    E. Lauga, M. Brenner, H. Stone, Microfluidics: the no-slip boundary condition, in Springer Handbook of Experimental Fluid Mechanics (Springer, 2007) pp. 1219--1240Google Scholar
  82. 82.
    B.U. Felderhof, Phys. Rev. E 85, 046303 (2012)ADSCrossRefGoogle Scholar
  83. 83.
    E. Bart, Chem. Eng. Sci. 23, 193 (1968)CrossRefGoogle Scholar
  84. 84.
    B.U. Felderhof, J. Chem. Phys. 124, 124705 (2006)ADSCrossRefGoogle Scholar
  85. 85.
    K. Aderogba, J.R. Blake, Bull. Aust. Math. Soc. 18, 345 (1978)CrossRefGoogle Scholar
  86. 86.
    S.H. Lee, R.S. Chadwick, L.G. Leal, J. Fluid Mech. 93, 705 (1979)ADSCrossRefGoogle Scholar
  87. 87.
    S.H. Lee, L.G. Leal, J. Fluid Mech. 98, 193 (1980)ADSCrossRefGoogle Scholar
  88. 88.
    C. Berdan II, L.G. Leal, J. Colloid Interface Sci. 87, 62 (1982)ADSCrossRefGoogle Scholar
  89. 89.
    J. Urzay, S.G. Llewellyn Smith, B.J. Glover, Phys. Fluids 19, 103106 (2007)ADSCrossRefGoogle Scholar
  90. 90.
    K.D. Danov, R. Aust, F. Durst, U. Lange, J. Colloid Interface Sci. 175, 36 (1995)ADSCrossRefGoogle Scholar
  91. 91.
    K.D. Danov, R. Aust, F. Durst, U. Lange, Int. J. Multiphase Flow 21, 1169 (1995)CrossRefGoogle Scholar
  92. 92.
    K.D. Danov, T.D. Gurkov, H. Raszillier, F. Durst, Chem. Eng. Sci. 53, 3413 (1998)CrossRefGoogle Scholar
  93. 93.
    R. Shail, J. Eng. Math. 17, 239 (1983)ADSCrossRefGoogle Scholar
  94. 94.
    J. Bławzdziewicz, V. Cristini, M. Loewenberg, Phys. Fluids 11, 251 (1999)ADSCrossRefGoogle Scholar
  95. 95.
    J. Bławzdziewicz, M.L. Ekiel-Jeżewska, E. Wajnryb, J. Chem. Phys. 133, 114703 (2010)ADSCrossRefGoogle Scholar
  96. 96.
    T. Bickel, Phys. Rev. E 75, 041403 (2007)ADSCrossRefGoogle Scholar
  97. 97.
    T. Bickel, Europhys. Lett. 106, 16004 (2014)ADSCrossRefGoogle Scholar
  98. 98.
    T. Bickel, Eur. Phys. J. E 20, 379 (2006)CrossRefGoogle Scholar
  99. 99.
    B.U. Felderhof, J. Chem. Phys. 125, 144718 (2006)ADSCrossRefGoogle Scholar
  100. 100.
    B.U. Felderhof, J. Chem. Phys. 125, 124904 (2006)ADSCrossRefGoogle Scholar
  101. 101.
    A. Daddi-Moussa-Ider, A. Guckenberger, S. Gekle, Phys. Rev. E 93, 012612 (2016)ADSCrossRefGoogle Scholar
  102. 102.
    A. Daddi-Moussa-Ider, A. Guckenberger, S. Gekle, Phys. Fluids 28, 071903 (2016)ADSCrossRefGoogle Scholar
  103. 103.
    A. Daddi-Moussa-Ider, S. Gekle, J. Chem. Phys. 145, 014905 (2016)ADSCrossRefGoogle Scholar
  104. 104.
    A. Daddi-Moussa-Ider, M. Lisicki, S. Gekle, J. Fluid Mech. 811, 210 (2017)ADSMathSciNetCrossRefGoogle Scholar
  105. 105.
    A. Daddi-Moussa-Ider, M. Lisicki, S. Gekle, Acta Mech. 229, 149 (2018)MathSciNetCrossRefGoogle Scholar
  106. 106.
    A. Daddi-Moussa-Ider, M. Lisicki, S. Gekle, Phys. Fluids 29, 111901 (2017)ADSCrossRefGoogle Scholar
  107. 107.
    A. Daddi-Moussa-Ider, S. Gekle, Phys. Rev. E 95, 013108 (2017)ADSCrossRefGoogle Scholar
  108. 108.
    A. Daddi-Moussa-Ider, M. Lisicki, S. Gekle, Phys. Rev. E 95, 053117 (2017)ADSCrossRefGoogle Scholar
  109. 109.
    A. Daddi-Moussa-Ider, Diffusion of Nanoparticles Nearby Elastic Cell Membranes: A Theoretical Study, PhD Thesis, University of Bayreuth, Germany (2017)Google Scholar
  110. 110.
    T. Salez, L. Mahadevan, J. Fluid Mech. 779, 181 (2015)ADSMathSciNetCrossRefGoogle Scholar
  111. 111.
    B. Saintyves, T. Jules, T. Salez, L. Mahadevan, Proc. Natl. Acad. Sci. U.S.A. 113, 5847 (2016)ADSCrossRefGoogle Scholar
  112. 112.
    B. Rallabandi, B. Saintyves, T. Jules, T. Salez, C. Schönecker, L. Mahadevan, H.A. Stone, Phys. Rev. Fluids 2, 074102 (2017)ADSCrossRefGoogle Scholar
  113. 113.
    H. Kress, E.H.K. Stelzer, G. Griffiths, A. Rohrbach, Phys. Rev. E 71, 061927 (2005)ADSCrossRefGoogle Scholar
  114. 114.
    R. Shlomovitz, A. Evans, T. Boatwright, M. Dennin, A. Levine, Phys. Rev. Lett. 110, 137802 (2013)ADSCrossRefGoogle Scholar
  115. 115.
    T. Boatwright, M. Dennin, R. Shlomovitz, A.A. Evans, A.J. Levine, Phys. Fluids 26, 071904 (2014)ADSCrossRefGoogle Scholar
  116. 116.
    F. Jünger, F. Kohler, A. Meinel, T. Meyer, R. Nitschke, B. Erhard, A. Rohrbach, Biophys. J. 109, 869 (2015)CrossRefGoogle Scholar
  117. 117.
    M. Irmscher, A.M. de Jong, H. Kress, M.W.J. Prins, Biophys. J. 102, 698 (2012)ADSCrossRefGoogle Scholar
  118. 118.
    D. Mizuno, Y. Kimura, R. Hayakawa, Langmuir 16, 9547 (2000)CrossRefGoogle Scholar
  119. 119.
    D. Mizuno, Y. Kimura, R. Hayakawa, Phys. Rev. E 70, 011509 (2004)ADSCrossRefGoogle Scholar
  120. 120.
    Y. Kimura, T. Mori, A. Yamamoto, D. Mizuno, J. Phys.: Condens. Matter 17, S2937 (2005)ADSGoogle Scholar
  121. 121.
    T.A. Waigh, Rep. Prog. Phys. 79, 074601 (2016)ADSCrossRefGoogle Scholar
  122. 122.
    W. Helfrich, Z. Naturforsch. C. 28, 693 (1973)CrossRefGoogle Scholar
  123. 123.
    M. Hu, J.J. Briguglio, M. Deserno, Biophys. J. 102, 1403 (2012)ADSCrossRefGoogle Scholar
  124. 124.
    R. Skalak, A. Tozeren, R.P. Zarda, S. Chien, Biophys. J. 13, 245 (1973)ADSCrossRefGoogle Scholar
  125. 125.
    Y. Lefebvre, D. Barthès-Biesel, J. Fluid Mech. 589, 157 (2007)ADSMathSciNetCrossRefGoogle Scholar
  126. 126.
    E. Lac, D. Barthès-Biesel, N.A. Pelekasis, J. Tsamopoulos, J. Fluid Mech. 516, 303 (2004)ADSMathSciNetCrossRefGoogle Scholar
  127. 127.
    T. Krüger, F. Varnik, D. Raabe, Comput. Math. Appl. 61, 3485 (2011)MathSciNetCrossRefGoogle Scholar
  128. 128.
    S. Gekle, Biophys. J. 110, 514 (2016)ADSCrossRefGoogle Scholar
  129. 129.
    C. Bächer, L. Schrack, S. Gekle, Phys. Rev. Fluids 2, 013102 (2017)ADSCrossRefGoogle Scholar
  130. 130.
    C. Schaaf, H. Stark, Soft Matter 13, 3544 (2017)ADSCrossRefGoogle Scholar
  131. 131.
    S. Quint, A.F. Christ, A. Guckenberger, S. Himbert, L. Kaestner, S. Gekle, C. Wagner, Appl. Phys. Lett. 111, 103701 (2017)ADSCrossRefGoogle Scholar
  132. 132.
    D. Barthès-Biesel, Annu. Rev. Fluid Mech. 48, 25 (2016)ADSMathSciNetCrossRefGoogle Scholar
  133. 133.
    S. Ramanujan, C. Pozrikidis, J. Fluid Mech. 361, 117 (1998)ADSMathSciNetCrossRefGoogle Scholar
  134. 134.
    M. Deserno, Chem. Phys. Lipids 185, 11 (2015)CrossRefGoogle Scholar
  135. 135.
    R.W. Ogden, Non-Linear Elastic Deformations (Courier Corporation, 1997)Google Scholar
  136. 136.
    A.E. Green, J.C. Adkins, Large Elastic Deformations and Non-linear Continuum Mechanics (Oxford University Press, 1960)Google Scholar
  137. 137.
    L. Zhu, Simulation of Individual Cells in Flow, PhD Thesis, KTH Royal Institute of Technology (2014). Google Scholar
  138. 138.
    A. Guckenberger, S. Gekle, J. Phys.: Condens. Matter 29, 203001 (2017)ADSGoogle Scholar
  139. 139.
    J.T. Jenkins, J. Math. Biol. 4, 149 (1977)CrossRefGoogle Scholar
  140. 140.
    T.R. Powers, Rev. Mod. Phys. 82, 1607 (2010)ADSCrossRefGoogle Scholar
  141. 141.
    A. Laadhari, C. Misbah, P. Saramito, Physica D 239, 1567 (2010)ADSMathSciNetCrossRefGoogle Scholar
  142. 142.
    K. Sinha, M.D. Graham, Phys. Rev. E 92, 042710 (2015)ADSCrossRefGoogle Scholar
  143. 143.
    S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Courier Corporation, 2013)Google Scholar
  144. 144.
    Y. von Hansen, M. Hinczewski, R.R. Netz, J. Chem. Phys. 134, 235102 (2011)ADSCrossRefGoogle Scholar
  145. 145.
    J.R. Blake, Math. Proc. Cambridge Philos. Soc. 70, 303 (1971)ADSCrossRefGoogle Scholar
  146. 146.
    J.W. Swan, J.F. Brady, Phys. Fluids 19, 113306 (2007)ADSCrossRefGoogle Scholar
  147. 147.
    C. Aponte-Rivera, R.N. Zia, Phys. Rev. Fluids 1, 023301 (2016)ADSCrossRefGoogle Scholar
  148. 148.
    Y.W. Kim, R.R. Netz, J. Chem. Phys. 124, 114709 (2006)ADSCrossRefGoogle Scholar
  149. 149.
    C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge Texts in Applied Mathematics, No. 8 (Cambridge University Press, New York, 1992)Google Scholar
  150. 150.
    C. Pozrikidis, J. Comput. Phys. 169, 250 (2001)ADSCrossRefGoogle Scholar
  151. 151.
    A. Guckenberger, M.P. Schraml, P.G. Chen, M. Leonetti, S. Gekle, Comput. Phys. Commun. 207, 1 (2016)ADSCrossRefGoogle Scholar
  152. 152.
    S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Dover Publications, Inc. Mineola, New York, 2005)Google Scholar
  153. 153.
    E.R. Dufresne, T.M. Squires, M.P. Brenner, D.G. Grier, Phys. Rev. Lett. 85, 3317 (2000)ADSCrossRefGoogle Scholar
  154. 154.
    T.M. Squires, M.P. Brenner, Phys. Rev. Lett. 85, 4976 (2000)ADSCrossRefGoogle Scholar
  155. 155.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966)ADSCrossRefGoogle Scholar
  156. 156.
    G. Ciccotti, J.P. Ryckaert, J. Stat. Phys. 26, 73 (1981)ADSCrossRefGoogle Scholar
  157. 157.
    R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II (Springer, 1985)Google Scholar
  158. 158.
    M.J. Saxton, Biophys. J. 66, 394 (1994)ADSCrossRefGoogle Scholar
  159. 159.
    Michael J. Saxton, Biophys. J. 70, 1250 (1996)ADSCrossRefGoogle Scholar
  160. 160.
    J.B. Freund, Phys. Fluids 25, 110807 (2013)ADSCrossRefGoogle Scholar
  161. 161.
    A. Einstein, Ann. Phys. 17, 549 (1905)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Theoretische Physik II: Weiche MaterieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  2. 2.Biofluid Simulation and Modeling, Fachbereich PhysikUniversität BayreuthBayreuthGermany

Personalised recommendations