Thermal and shape topological robustness of heat switchers using nematic liquid crystals

  • Sébastien Fumeron
  • Fernando Moraes
  • Erms Pereira
Regular Article
  • 21 Downloads

Abstract.

One interesting way to control heat is to use devices designed by transformation thermics, where artificial media are used. However, once manufactured (either repelling or concentrating heat, for example), besides being mono-purpose, such devices are designed according to a specific geometric boundary conditions. Another problem is the temperature dependence of the materials employed, since their properties are sometimes considered temperature-invariant. In this paper, we show that a previously proposed bi-objective heat switcher (Phys. Rev. E 89, 020501(R) (2014)) is in fact robust against temperature and geometric deformations, due to the topological properties of the molecular nematic orientation. Using a geometrical approach for heat propagation, by performing finite element simulations, we show that a device made by concentric cylinders with thermotropic nematic liquid crystal between them, sustains its functionality even with their molecular thermal conductivities depending on the temperature, achieving a 60% increase and a 44% decrease in the heat flux for each mode. Utilizing topological arguments we show that deformations on the surface of the outer cylinder do not break the operating mode (repeller or concentrator). We present a comparison between our geometrical approach and the transformation thermodynamics to give an additional explanation for the obtained results. We hope the presented device is useful for heat control under mechanical and thermal influence of the external environment.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    A. Majumdar, J. Heat Transfer 115, 7 (1993)CrossRefGoogle Scholar
  2. 2.
    S. Fumeron, D. Lacroix, EPL 82, 66003 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    J.K. Kim, K.V. Le, S. Dhara, F. Araoka, K. Ishikawa, H. Takezoe, J. Appl. Phys. 107, 123108 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    P.J. van Zwol, K. Joulain, P. Ben Abdallah, J.J. Greffet, J. Chevrier, Phys. Rev. B 83, 201404 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    M. Maldovan, Phys. Rev. Lett. 110, 025902 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Martin Maldovan, Nature 503, 209 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Djair Melo, Ivna Fernandes, Erms Pereira, Fernando Moraes, Sébastien Fumeron, Diodo térmico feito de cristal líquido nemático, Patent Number: BR1020170067092 (2017)Google Scholar
  8. 8.
    C.W. Chang, A. Majumdar, A.K. Zettl, Solid state thermal rectifier, US Patent 9385065 (2016)Google Scholar
  9. 9.
    C.H. Chen, J.B. Boreyko, Y. Zhao, Thermal diode device and methods, US Patent 8716689 (2014)Google Scholar
  10. 10.
    Djair Melo, Ivna Fernandes, Fernando Moraes, Sébastien Fumeron, Erms Pereira, Phys. Lett. A 380, 3121 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    N. Li, J. Ren, L. Wang, G. Zhang, P. Hanggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    M. Criado-Sancho, D. Jou, J. Appl. Phys. 121, 24503 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Narayana, Y. Sato, Phys. Rev. Lett. 108, 214303 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    T. Han, T. Yuan, B. Li, C.-W. Qiu, Sci. Rep. 3, 1593 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Sébastien Fumeron, Bertrand Berche, Fernando Moraes, Fernando A.N. Santos, Erms Pereira, Eur. Phys. J. B 90, 95 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    S. Guenneau, C. Amra, D. Veynante, Opt. Express 20, 8207 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Clarendon Press, Oxford, 1992)Google Scholar
  18. 18.
    Patrick Oswald, Pawel Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (CRC Press, 2005)Google Scholar
  19. 19.
    M. Kleman, O.D. Lavrentovich, Soft Matter Physics: An Introduction (Springer-Verlag, New York, 2003)Google Scholar
  20. 20.
    Sébastien Fumeron, Fernando Moraes, Erms Pereira, Eur. Phys. J. E 39, 83 (2016)CrossRefGoogle Scholar
  21. 21.
    C. Sátiro, F. Moraes, Eur. Phys. J. E 25, 425 (2008)CrossRefGoogle Scholar
  22. 22.
    C. Sátiro, F. Moraes, Eur. Phys. J. E 20, 173 (2006)CrossRefGoogle Scholar
  23. 23.
    E. Pereira, F. Moraes, Liq. Cryst. 38, 295 (2011)CrossRefGoogle Scholar
  24. 24.
    E.R. Pereira, F. Moraes, Cent. Eur. J. Phys. 9, 1100 (2011)Google Scholar
  25. 25.
    Sébastien Fumeron, Bertrand Berche, Fernando Santos, Erms Pereira, Fernando Moraes, Phys. Rev. A 92, 63806 (2015)CrossRefGoogle Scholar
  26. 26.
    Sébastien Fumeron, Erms Pereira, Fernando Moraes, Physica B 476, 19 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    S. Fumeron, E. Pereira, F. Moraes, Int. J. Therm. Sci. 67, 64 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Fumeron, E. Pereira, F. Moraes, Phys. Rev. E 89, 20501 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    E. Pereira, S. Fumeron, F. Moraes, Phys. Rev. E 87, 22506 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    F. Grandjean, Bull. Soc. Fr. Minéral. 42, 42 (1919)Google Scholar
  31. 31.
    A. Joets, R. Ribotta, Opt. Commun. 107, 200 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    M.J. Stephen, J.P. Straley, Rev. Mod. Phys. 46, 617 (1974)ADSCrossRefGoogle Scholar
  33. 33.
    F.I. Fedorov, Theory of Elastic Waves in Crystals (Plenum, New York, 1968)Google Scholar
  34. 34.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman and Company, San Francisco, 1973). Google Scholar
  35. 35.
    Guenter Ahlers, David S. Cannell, Lars Inge Berge, Shinichi Sakurai, Phys. Rev. E 49, 545 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    Vinay K. Gupta, Nicholas L. Abbott, Science 276, 1533 (1997)CrossRefGoogle Scholar
  37. 37.
    D.-K. Yang, S.-T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley, New Jersey, 2006)Google Scholar
  38. 38.
    Maria L.V. Ramires, Carlos A. de Castro, Yuchi Nagasaka, Akira Nagashima, Marc J. Assael, William A. Wakeham, J. Phys. Chem. Ref. Data 24, 1377 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    John Willard Milnor, Topology from the Differentiable Viewpoint (Princeton University Press, 1997)Google Scholar
  40. 40.
    Min Sung Kim, Mi Hee Lee, Byeong-Ju Kwon, Hyok Jin Seo, Min-Ah Koo, Kyung Eun You, Dohyun Kim, Jong-Chul Park, Biomater. Res. 18, 10 (2014)CrossRefGoogle Scholar
  41. 41.
    Yoonseuk Choi, Hiroshi Yokoyama, Jin Seog Gwag, Opt. Express 21, 12135 (2013)CrossRefGoogle Scholar
  42. 42.
    Istvan Janossy, T.I. Kósa, Phys. Rev. E 70, 52701 (2004)CrossRefGoogle Scholar
  43. 43.
    Robert N. Thurston, Julian Cheng, G.D. Boyd, IEEE Trans. Electron Dev. 27, 2069 (1980)CrossRefGoogle Scholar
  44. 44.
    Jie Xiang, Oleg D. Lavrentovich, Mol. Cryst. Liq. Cryst. 559, 106 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sébastien Fumeron
    • 1
  • Fernando Moraes
    • 2
  • Erms Pereira
    • 2
  1. 1.Institut Jean LamourUniversité de LorraineVandœuvre les NancyFrance
  2. 2.Departamento de FísicaUniversidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations