Threshold response and bistability in gene regulation by small noncoding RNA

Regular Article
  • 26 Downloads

Abstract.

In this paper, we study through mathematical modelling the combined effect of transcriptional and translational regulation by proteins and small noncoding RNAs (sRNA) in a genetic feedback motif that has an important role in the survival of E. coli under stress associated with oxygen and energy availability. We show that subtle changes in this motif can bring in drastically different effects on the gene expression. In particular, we show that a threshold response in the gene expression changes to a bistable response as the regulation on sRNA synthesis or degradation is altered. These results are obtained under deterministic conditions. Next, we study how the gene expression is altered by additive and multiplicative noise which might arise due to probabilistic occurrences of different biochemical events. Using the Fokker-Planck formulation, we obtain steady-state probability distributions for sRNA concentration for the network motifs displaying bistability. The probability distributions are found to be bimodal with two peaks at low and high concentrations of sRNAs. We further study the variations in the probability distributions under different values of noise strength and correlations. The results presented here might be of interest for designing synthetic network for artificial control.

Graphical abstract

Keywords

Living systems: Biological networks 

References

  1. 1.
    U. Alon, Introduction to Systems Biology (Chapman and Hall/CRC, London, 2006)Google Scholar
  2. 2.
    S. Gottesman, Trends Genet. 21, 399 (2005)CrossRefGoogle Scholar
  3. 3.
    E. Massé, S. Gottesman, Proc. Natl. Acad. Sci. U.S.A. 99, 4620 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    N. Majdalani, S. Chen, J. Murrow, K. St John, S. Gottesman, Mol. Microbiol. 39, 1382 (2001)CrossRefGoogle Scholar
  5. 5.
    K. Papenfort, C.K. Vanderpool, FEMS Microbiol. Rev. 39, 362 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Mangan, U. Alon, Proc. Natl. Acad. Sci. U.S.A. 100, 11980 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    N. Rosenfeld, M.B. Elowitz, U. Alon, J. Mol. Biol. 323, 785 (2002)CrossRefGoogle Scholar
  8. 8.
    S.S. Shen-orr, R. Milo, S. Mangan, U. Alon, Nat. Genet. 31, 64 (2002)CrossRefGoogle Scholar
  9. 9.
    B. Ghosh, R. Karmakar, I. Bose, Phys. Biol. 2, 36 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    E. Levine, T. Hwa, Curr. Opin. Microbiol. 11, 574 (2008)CrossRefGoogle Scholar
  11. 11.
    E. Levine, Z. Zhang, T. Kuhlman, T. Hwa, PLoS Biol. 5, e229 (2007)CrossRefGoogle Scholar
  12. 12.
    A. Arkin, J. Ross, H.H. McAdams, Genetics 149, 1633 (1998)Google Scholar
  13. 13.
    O. Kobiler, A. Rokney, N. Friedman, D.L. Court, J. Stavans, A.B. Oppenheim, Proc. Natl. Acad. Sci. U.S.A. 102, 4470 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    B. Novak, J.J. Tyson, J. Cell Sci. 106, 1153 (1993)Google Scholar
  15. 15.
    W. Sha, J. Moore, K. Chen, A.D. Lassaletta, C.S. Yi, J.J. Tyson, J.C. Sible, Proc. Natl. Acad. Sci. U.S.A. 100, 975 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    E.H. Davidson, D.R. McClay, L. Hood, Proc. Natl. Acad. Sci. U.S.A. 100, 1475 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    A. Tiwari, J. Christian, J. Ray, J. Narula, O.A. Igoshin, Math. Biosci. 231, 76 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    E. Klauck, R. Hengge, $\sigma^s$ controlling networks in Escherichia coli, in Bacterial Regulatory Networks, edited by A. Filloux (Horizon Scientific Press, Norwich, UK, 2012) pp. 1--25Google Scholar
  19. 19.
    P. Mandin, S. Gottesman, EMBO J. 29, 3094 (2010)CrossRefGoogle Scholar
  20. 20.
    F. Mika, R. Hengge, Genes Dev. 19, 2770 (2005)CrossRefGoogle Scholar
  21. 21.
    A. Toro-Roman, T.R. Mack, A.M. Stock, J. Mol. Biol. 349, 11 (2013)CrossRefGoogle Scholar
  22. 22.
    R. Karmakar, I. Bose, Phys. Biol. 4, 29 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    J.-W. Veening, W.K. Smits, O.P. Kuipers, Annu. Rev. Microbiol. 62, 193 (2008)CrossRefGoogle Scholar
  24. 24.
    Y. Shimoni, G. Friedlander, G. Hetzroni, G. Niv, S. Altuvia, O. Biham, H. Margalit, Mol. Syst. Biol. 3, 128 (2007)CrossRefGoogle Scholar
  25. 25.
    C.A. Miller, D.A. Beard, Biophys. J. 96, 2183 (2008)CrossRefGoogle Scholar
  26. 26.
    S.H. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, Colorado, USA, 2015)Google Scholar
  27. 27.
    M. Kaern, T.C. Elston, W.J. Blake, J.J. Collins, Nat. Rev. Genet. 6, 451 (2005)CrossRefGoogle Scholar
  28. 28.
    A. Raj, A. van Oudenaarden, Cell 135, 216 (2008)CrossRefGoogle Scholar
  29. 29.
    H. Maamar, A. Raj, D. Dubnau, Science 317, 526 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    A. Becskei, B. Seraphin, L. Serrano, EMBO J. 20, 2528 (2001)CrossRefGoogle Scholar
  31. 31.
    P.S. Swain, M.B. Elowitz, E.D. Siggia, Proc. Natl. Acad. Sci. U.S.A. 99, 12795 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain, Science 297, 1183 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    J. Hasty, J. Pradines, M. Dolnik, J.J. Collins, Proc. Natl. Acad. Sci. U.S.A. 97, 2075 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    S. Ghosh, S. Banerjee, I. Bose, Eur. Phys. J. E 35, 11 (2011)CrossRefGoogle Scholar
  35. 35.
    X.-D. Zheng, X.-Q. Yang, Y. Ta, PLoS One 6, e17104 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    L.A. Reichl, Modern Course in Statistical Physics (Wiley-VCH, Germany, 2009)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Protein Chemistry and TechnologyCentral Food Technological Research InstituteMysoreIndia

Personalised recommendations