Lattice Boltzmann simulations of droplet dynamics in time-dependent flows

Regular Article
  • 102 Downloads
Part of the following topical collections:
  1. Fluids and Structures: Multi-scale coupling and modeling

Abstract.

We study the deformation and dynamics of droplets in time-dependent flows using 3D numerical simulations of two immiscible fluids based on the lattice Boltzmann model (LBM). Analytical models are available in the literature, which assume the droplet shape to be an ellipsoid at all times (P.L. Maffettone, M. Minale, J. Non-Newton. Fluid Mech 78, 227 (1998); M. Minale, Rheol. Acta 47, 667 (2008)). Beyond the practical importance of using a mesoscale simulation to assess “ab initio” the robustness and limitations of such theoretical models, our simulations are also key to discuss --in controlled situations-- some relevant phenomenology related to the interplay between the flow time scales and the droplet time scales regarding the “transparency” transition for high enough shear frequencies for an external oscillating flow. This work may be regarded as a step forward to discuss extensions towards a novel DNS approach, describing the mesoscale physics of small droplets subjected to a generic hydrodynamical strain field, possibly mimicking the effect of a realistic turbulent flow on dilute droplet suspensions.

Graphical abstract

Keywords

Topical issue: Fluids and Structures: Multi-scale coupling and modeling 

References

  1. 1.
    R. Benzi, S. Succi, M. Vergassola, Phys. Rep. 222, 145 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, 2001). Google Scholar
  3. 3.
    M. Sbragaglia, R. Benzi, M. Bernaschi, S. Succi, Soft Matter 8, 10773 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    J. Onishi, Y. Chen, H. Ohashi, Prog. Comput. Fluid Dyn. 5, 75 (2005)CrossRefGoogle Scholar
  5. 5.
    M. Gross, M.E. Cates, F. Varnik, R. Adhikari, J. Stat. Mech.: Theor. Exp. 2011, P03030 (2011)CrossRefGoogle Scholar
  6. 6.
    R.W. Flumerfelt, Ind. Eng. Chem. Fundam. 11, 312 (1972)CrossRefGoogle Scholar
  7. 7.
    G.I. Taylor, Proc. R. Soc. A 138, 41 (1932)ADSCrossRefGoogle Scholar
  8. 8.
    F. Greco, J. Non-Newton. Fluid Mech. 107, 111 (2002)CrossRefGoogle Scholar
  9. 9.
    S. Guido, F. Greco, Rheol. Rev. 2, 99 (2004)Google Scholar
  10. 10.
    S. Guido, M. Simeone, F. Greco, J. Non-Newton. Fluid Mech. 114, 65 (2003)CrossRefGoogle Scholar
  11. 11.
    V. Sibillo, M. Simeone, S. Guido, F. Greco, P.L. Maffettone, J. Non-Newton. Fluid Mech. 134, 27 (2006)CrossRefGoogle Scholar
  12. 12.
    K. Premnath, J. Abraham, J. Comput. Phys. 224, 539 (2007)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Tomé, L. Grossi, A. Castelo, J. Cuminato, S. McKee, K. Walters, J. Non-Newton. Fluid Mech. 141, 148 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Minale, Rheol. Acta 47, 667 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Shapira, S. Haber, Int. J. Multiphase Flow 16, 305 (1990)CrossRefGoogle Scholar
  16. 16.
    P.L. Maffettone, F. Greco, J. Rheol. 48, 83 (2003)CrossRefGoogle Scholar
  17. 17.
    P.L. Maffettone, F. Greco, M. Simeone, S. Guido, J. Non-Newton. Fluid Mech. 126, 145 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Gupta, M. Sbragaglia, Phys. Rev. E 90, 023305 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    F. Greco, Phys. Fluids 14, 946 (2002)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    P.L. Maffettone, M. Minale, J. Non-Newton. Fluid Mech. 78, 227 (1998)CrossRefGoogle Scholar
  21. 21.
    S. Guido, M. Villone, J. Rheol. 42, 395 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    H.A. Stone, Annu. Rev. Fluid Mech. 26, 65 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    K. Verhulst, R. Cardinaels, P. Moldenaers, Y. Renardy, S. Afkhami, J. Non-Newton. Fluid Mech. 156, 29 (2009)CrossRefGoogle Scholar
  24. 24.
    K. Verhulst, R. Cardinaels, P. Moldenaers, S. Afkhami, Y. Renardy, J. Non-Newton. Fluid Mech. 156, 44 (2009)CrossRefGoogle Scholar
  25. 25.
    N. Aggarwal, K. Sarkar, J. Fluid Mech. 601, 63 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    S. Mukherjee, K. Sarkar, J. Non-Newton. Fluid Mech. 165, 340 (2010)CrossRefGoogle Scholar
  27. 27.
    R. Cardinaels, P. Moldenaers, Microfluid Nanofluid 10, 1153 (2011)CrossRefGoogle Scholar
  28. 28.
    S. Guido, Curr. Opin. Colloid Interface Sci. 16, 61 (2011)CrossRefGoogle Scholar
  29. 29.
    R. Cardinaels, K. Verhulst, P. Moldenaers, J. Rheol. 53, 1403 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    R. Cardinaels, P. Moldenaers, Rheol. Acta 49, 941 (2010)CrossRefGoogle Scholar
  31. 31.
    R. Cardinaels, A. Vananroye, P. Van Puyvelde, P. Moldenaers, Macromol. Mater. Eng. 296, 214 (2011)CrossRefGoogle Scholar
  32. 32.
    A. Gupta, M. Sbragaglia, A. Scagliarini, J. Comput. Phys. 291, 177 (2015)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    R. Cardinaels, P. Moldenaers, J. Polym. Sci. Part B 48, 1372 (2010)CrossRefGoogle Scholar
  34. 34.
    P. Yue, J.J. Feng, C. Liu, J. Shen, J. Fluid Mech. 515, 293 (2004)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Minale, Rheol. Acta 49, 789 (2010)CrossRefGoogle Scholar
  36. 36.
    D.O. Njobuenwu, M. Fairweather, Chem. Eng. Sci. 123, 265 (2015)CrossRefGoogle Scholar
  37. 37.
    L. Biferale, C. Meneveau, R. Verzicco, J. Fluid Mech. 754, 184 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    V. Spandan, D. Lohse, R. Verzicco, J. Fluid Mech. 809, 480 (2016)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Minale, J. Non-Newton. Fluid Mech. 123, 151 (2004)CrossRefGoogle Scholar
  40. 40.
    M. Minale, S. Caserta, S. Guido, Langmuir 26, 126 (2010)CrossRefGoogle Scholar
  41. 41.
    P. Yue, J.J. Feng, C. Liu, J. Shen, J. Fluid Mech. 540, 427 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    R.G.M. van der Sman, S. van der Graaf, Comput. Phys. Commun. 178, 492 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    A.E. Komrakovaa, O. Shardt, D. Eskinb, J.J. Derksen, Int. J. Multiphase Flow 59, 23 (2014)CrossRefGoogle Scholar
  44. 44.
    H. Xi, C. Duncan, Phys. Rev. E 59, 3022 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    V. Sibillo, G. Pasquariello, M. Simeone, V. Cristini, S. Guido, Phys. Rev. Lett. 97, 054502 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    C.E. Chaffey, H. Brenner, J. Colloid Interface Sci. 24, 258 (1967)ADSCrossRefGoogle Scholar
  47. 47.
    Y.Y. Renardy, V. Cristini, Phys. Fluids 13, 7 (2001)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    K. Verhulst, P. Moldenaers, M. Minale, J. Rheol. 51, 261 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    A. Vananroye, R. Cardinaels, P. Van Puyvelde, P. Moldenaers, J. Rheol. 52, 1459 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    X. Shan, H. Chen, Phys. Rev. E 49, 2941 (1994)ADSCrossRefGoogle Scholar
  52. 52.
    M. Sbragaglia, D. Belardinellli, Phys. Rev. E 88, 013306 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    M. Sega, M. Sbragaglia, S. Kantorovich, A. Ivanov, Soft Matter 9, 10092 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    D. d'Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L. Luo, Philos. Trans. R. Soc. A 360, 437 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    K. Mattila et al., J. Stat. Mech.: Theor. Exp. 2009, 1742 (2009)CrossRefGoogle Scholar
  56. 56.
    M. Hecht, J. Harting, J. Stat. Mech.: Theor. Exp. 2010, 1742 (2010)CrossRefGoogle Scholar
  57. 57.
    Q. Zou, X. He, Phys. Fluids 9, 1070 (1997)CrossRefGoogle Scholar
  58. 58.
    N. Ioannou, H. Liu, Y.H. Zhang, J. Comput. Sci. 17, 463 (2016)MathSciNetCrossRefGoogle Scholar
  59. 59.
    L.D. Landau, E.M. Lifschitz, Fluid Mechanics, 2nd edition (Pergamon Press, 1987)Google Scholar
  60. 60.
    W. Yu, M. Bousmina, M. Grmela, C. Zhou, J. Rheol. 46, 1401 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    R.G. Cox, J. Fluid Mech. 37, 601 (1969)ADSCrossRefGoogle Scholar
  62. 62.
    R. Cavallo, S. Guido, M. Simeone, Rheol. Acta 42, 1 (2002)CrossRefGoogle Scholar
  63. 63.
    A. Farutin, C. Misbah, J. Fluid Mech. 700, 362 (2012)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • F. Milan
    • 1
    • 2
  • M. Sbragaglia
    • 1
  • L. Biferale
    • 1
  • F. Toschi
    • 2
    • 3
    • 4
  1. 1.Department of Physics and INFNUniversity of “Tor Vergata”RomeItaly
  2. 2.Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.CNR-IACRomeItaly

Personalised recommendations