A unified description of colloidal thermophoresis

Abstract.

We use the dynamic length and time scale separation in suspensions to formulate a general description of colloidal thermophoresis. Our approach allows an unambiguous definition of separate contributions to the colloidal flux and clarifies the physical mechanisms behind non-equilibrium motion of colloids. In particular, we derive an expression for the interfacial force density that drives single-particle thermophoresis in non-ideal fluids. The issuing relations for the transport coefficients explicitly show that interfacial thermophoresis has a hydrodynamic character that cannot be explained by a purely thermodynamic consideration. Our treatment generalises the results from other existing approaches, giving them a clear interpretation within the framework of non-equilibrium thermodynamics.

Graphical abstract

References

  1. 1

    C. Ludwig, Sitzber. Akad. Wiss. Wien, Math.-Nat. Wiss. Kl. 20, 539 (1856)

    Google Scholar 

  2. 2

    C. Soret, Arch. Sci. Phys. Nat. Genève 2, 48 (1879)

    Google Scholar 

  3. 3

    S.A. Putnam, D.G. Cahill, Langmuir 21, 5317 (2005)

    Article  Google Scholar 

  4. 4

    S. Duhr, D. Braun, Proc. Natl. Acad. Sci. U.S.A. 103, 19678 (2006)

    ADS  Article  Google Scholar 

  5. 5

    S. Iacopini, R. Rusconi, R. Piazza, Eur. Phys. J. E 19, 59 (2006)

    Article  Google Scholar 

  6. 6

    M. Braibanti, D. Vigolo, R. Piazza, Phys. Rev. Lett. 100, 108303 (2008)

    ADS  Article  Google Scholar 

  7. 7

    S. Duhr, D. Braun, Phys. Rev. Lett. 96, 168301 (2006)

    ADS  Article  Google Scholar 

  8. 8

    J.K.G. Dhont, S. Wiegand, S. Duhr, D. Braun, Langmuir 23, 1674 (2007)

    Article  Google Scholar 

  9. 9

    R. Piazza, A. Guarino, Phys. Rev. Lett. 88, 208302 (2002)

    ADS  Article  Google Scholar 

  10. 10

    R. Piazza, Philos. Mag. 83, 2067 (2003)

    ADS  Article  Google Scholar 

  11. 11

    M.E. Schimpf, J.C. Giddings, Macromolecules 20, 1561 (1987)

    ADS  Article  Google Scholar 

  12. 12

    K.J. Zhang, M.E. Briggs, R.W. Gammon, J.V. Sengers, J.F. Douglas, J. Chem. Phys. 111, 2270 (1999)

    ADS  Article  Google Scholar 

  13. 13

    S. Duhr, S. Arduini, D. Braun, Eur. Phys. J. E 15, 277 (2004)

    Article  Google Scholar 

  14. 14

    D. Braun, A. Libchaber, Phys. Rev. Lett. 89, 188103 (2002)

    ADS  Article  Google Scholar 

  15. 15

    S.J. Jeon, M.E. Schimpf, A. Nyborg, Anal. Chem. 69, 3442 (1997)

    Article  Google Scholar 

  16. 16

    S. Duhr, D. Braun, Phys. Rev. Lett. 97, 038103 (2006)

    ADS  Article  Google Scholar 

  17. 17

    A. Würger, Eur. Phys. J. E 37, 96 (2014)

    Article  Google Scholar 

  18. 18

    Y. Demirel, S.I. Sandler, Int. J. Heat Mass Transfer 44, 2439 (2001)

    Article  Google Scholar 

  19. 19

    J.K.G. Dhont, W.J. Briels, Eur. Phys. J. E 25, 61 (2008)

    Article  Google Scholar 

  20. 20

    J.K.G. Dhont, J. Chem. Phys. 120, 1632 (2004)

    ADS  Article  Google Scholar 

  21. 21

    A. Parola, R. Piazza, Eur. Phys. J. E 15, 255 (2004)

    Article  Google Scholar 

  22. 22

    R. Piazza, A. Parola, J. Phys.: Condens. Matter 20, 153102 (2008)

    ADS  Google Scholar 

  23. 23

    A. Würger, Rep. Prog. Phys. 73, 126601 (2010)

    ADS  Article  Google Scholar 

  24. 24

    S. de Groot, P. Mazur, Non-equilibrium Thermodynamics (North-Holland, 1969)

  25. 25

    E. Ruckenstein, J. Colloid Interface Sci. 83, 77 (1981)

    ADS  Article  Google Scholar 

  26. 26

    A. Würger, J. Phys.: Condens. Matter 26, 035105 (2014)

    Google Scholar 

  27. 27

    A. Würger, C. R. Mec. 341, 438 (2013)

    ADS  Article  Google Scholar 

  28. 28

    S. Fayolle, T. Bickel, A. Würger, Phys. Rev. E 77, 041404 (2008)

    ADS  Article  Google Scholar 

  29. 29

    L. Onsager, Phys. Rev. Lett. 37, 405 (1931)

    ADS  Google Scholar 

  30. 30

    L. Onsager, Phys. Rev. Lett. 38, 2265 (1931)

    ADS  Google Scholar 

  31. 31

    J.F. Brady, J. Fluid Mech. 667, 216 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  32. 32

    R. van Roij, M. Dijkstra, J.-P. Hansen, Phys. Rev. E 59, 2010 (1999)

    ADS  Article  Google Scholar 

  33. 33

    B.U. Felderhof, J. Chem. Phys. 118, 11326 (2003)

    ADS  Article  Google Scholar 

  34. 34

    S. Kjelstrup, D. Bedeaux, Ser. Adv. Stat. Mech. 16, 73 (2008)

    Google Scholar 

  35. 35

    J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)

    ADS  Article  Google Scholar 

  36. 36

    J.N. Agar, C.Y. Mou, J.L. Lin, J. Phys. Chem. 93, 2079 (1989)

    Article  Google Scholar 

  37. 37

    J. Morthomas, A. Würger, Eur. Phys. J. E 27, 425 (2008)

    Article  Google Scholar 

  38. 38

    B. Derjaguin, N. Churaev, V. Muller, Surface Forces (Springer, New York, 1987)

  39. 39

    J. Dorfman, T. Kirkpatrick, J. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994)

    ADS  Article  Google Scholar 

  40. 40

    J. Rubí, P. Mazur, Physica A 250, 253 (1998) arXiv:9706077 [cond-mat]

    ADS  Article  Google Scholar 

  41. 41

    T. Murphy, J. Aguirre, J. Chem. Phys. 57, 2098 (1972)

    ADS  Article  Google Scholar 

  42. 42

    J.K.G. Dhont, J. Chem. Phys. 120, 1642 (2004)

    ADS  Article  Google Scholar 

  43. 43

    G.K. Batchelor, J. Fluid Mech. 74, 1 (1976)

    ADS  MathSciNet  Article  Google Scholar 

  44. 44

    A. Majee, A. Würger, Phys. Rev. E 83, 061403 (2011)

    ADS  Article  Google Scholar 

  45. 45

    P. Debye, E. Hückel, Phys. Z. 24, 185 (1923)

    Google Scholar 

  46. 46

    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media Vol. 8 (Pergamon Press, 1960) pp. 47--52

  47. 47

    S. Fayolle, T. Bickel, S. Le Boiteux, A. Würger, Phys. Rev. Lett. 95, 208301 (2005)

    ADS  Article  Google Scholar 

  48. 48

    E. Bringuier, A. Bourdon, Phys. Rev. E 67, 011404 (2003)

    ADS  Article  Google Scholar 

  49. 49

    A. Würger, Europhys. Lett. 74, 658 (2006)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daan Frenkel.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burelbach, J., Frenkel, D., Pagonabarraga, I. et al. A unified description of colloidal thermophoresis. Eur. Phys. J. E 41, 7 (2018). https://doi.org/10.1140/epje/i2018-11610-3

Download citation

Keywords

  • Topical issue: Non-equilibrium processes in multicomponent and multiphase media