Inertial shear flow of assemblies of frictionless polygons: Rheology and microstructure

  • Émilien Azéma
  • Farhang Radjaï
  • Jean-Noël Roux
Regular Article
  • 30 Downloads

Abstract.

Motivated by the understanding of shape effects in granular materials, we numerically investigate the macroscopic and microstructural properties of anisotropic dense assemblies of frictionless polydisperse rigid pentagons in shear flow, and compare them with similar systems of disks. Once subjected to large cumulative shear strains their rheology and microstructure are investigated in uniform steady states, depending on inertial number I, which ranges from the quasistatic limit (\( I\sim 10^{-5}\)) to 0.2. In the quasistatic limit both systems are devoid of Reynolds dilatancy, i.e., flow at their random close packing density. Both macroscopic friction angle \( \varphi\), an increasing function of I , and solid fraction \( \nu\), a decreasing function of I, are larger with pentagons than with disks at small I, but the differences decline for larger I and, remarkably, nearly vanish for \( I\sim 0.2\). Under growing I , the depletion of contact networks is considerably slower with pentagons, in which increasingly anisotropic, but still well-connected force-transmitting structures are maintained throughout the studied range. Whereas contact anisotropy and force anisotropy contribute nearly equally to the shear strength in disk assemblies, the latter effect dominates with pentagons at small I, while the former takes over for I of the order of 10-2. The size of clusters of grains in side-to-side contact, typically comprising more than 10 pentagons in the quasistatic limit, very gradually decreases for growing I.

Graphical abstract

Keywords

Flowing Matter: Granular Matter 

References

  1. 1.
    D.J. Cumberland, R.J. Crawford, The Packing of Particles (Elsevier, Amsterdam, 1987)Google Scholar
  2. 2.
    T. Aste, D. Weaire, The Pursuit of Perfect Packing (Institute of Physics Publishing, Bristol, 2000)Google Scholar
  3. 3.
    C. O'Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 68, 011306 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    A. Donev, S. Torquato, F.H. Stillinger, Phys. Rev. E 71, 011105 (2005)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    I. Agnolin, J.-N. Roux, Phys. Rev. E 76, 061302 (2007)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Donev, F.H. Stillinger, P.M. Chaikin, S. Torquato, Phys. Rev. Lett. 92, 255506 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    A. Donev, I. Cisse, D. Sachs, E.A. Variano, F.H. Stillinger, R. Connelly, S. Torquato, P.M. Chaikin, Science 303, 990 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    W. Man, A. Donev, F.H. Stillinger, M.T. Sullivan, W.B. Russel, D. Heeger, S. Inati, S. Torquato, P.M. Chaikin, Phys. Rev. Lett. 94, 198001 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S. Sacanna, L. Rossi, A. Wouterse, A.P. Philipse, J. Phys.: Condens. Matter 19, 376108 (2007)Google Scholar
  10. 10.
    E. Azéma, F. Radjaï, Phys. Rev. E 81, 051304 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    S. Torquato, Y. Jiao, Phys. Rev. E 80, 041104 (2009)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    K.C. Smith, M. Alam, T.S. Fisher, Phys. Rev. E 82, 051304 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    J. Baker, A. Kudrolli, Phys. Rev. E 82, 061304 (2010)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Y. Jiao, F.H. Stillinger, S. Torquato, Phys. Rev. E 81, 041304 (2010)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    E. Azéma, F. Radjai, F. Dubois, Phys. Rev. E 87, 062203 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    E. Azéma, F. Radjai, B. Saint-Cyr, J.-Y. Delenne, P. Sornay, Phys. Rev. E 87, 052205 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    S. Torquato, T.M. Truskett, P.G. Debenedetti, Phys. Rev. Lett. 84, 2064 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    P. Chaudhuri, L. Berthier, S. Sastry, Phys. Rev. Lett. 104, 165701 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    J.-N. Roux, Phys. Rev. E 61, 6802 (2000)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Donev, R. Connelly, F.H Stillinger, S. Torquato, Phys. Rev. E 75, 051304 (2007)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Wyart, S.R. Nagel, T.A. Witten, Europhys. Lett. 72, 486 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    C. Voivret, F. Radjai, J.-Y. Delenne, M.S. El Youssoufi, Phys. Rev. Lett. 102, 178001 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    T.-T. Ng, Mech. Mater. 41, 748 (2009)CrossRefGoogle Scholar
  24. 24.
    K. Szarf, G. Combe, P. Villard, Powder Technol. 208, 279 (2011)CrossRefGoogle Scholar
  25. 25.
    D.-H. Nguyen, E. Azéma, F. Radjai, P. Sornay, Phys. Rev. E 91, 032203 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    J. Katagiri, T. Matsushima, Y. Yamada, Granular Matter 16, 891 (2014)CrossRefGoogle Scholar
  27. 27.
    R. Kawamoto, E. Ando, G. Viggiana, J.E. Andrade, J. Mech. Phys. Solids 111, 375 (2018)CrossRefGoogle Scholar
  28. 28.
    F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, F. Chevoir, Phys. Rev. E 72, 021309 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    T. Hatano, Phys. Rev. E 75, 060301(R) (2007)ADSCrossRefGoogle Scholar
  30. 30.
    E. Azéma, F. Radjai, Phys. Rev. Lett. 112, 078001 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    J.-N. Roux, F. Chevoir, Dimensional Analysis and Control Parameters, in Discrete-Element Modeling of Granular Materials, edited by F. Radjai, F. Dubois, (Wiley, 2011) pp. 199--232Google Scholar
  32. 32.
    H. Troadec, F. Radjai, S. Roux, J.-C. Charmet, Phys. Rev. E 66, 041305 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    G. Combe, J.-N. Roux, Phys. Rev. Lett. 85, 3628 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    P.-E. Peyneau, J.-N. Roux, Phys. Rev. E 78, 041307 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    P.-E. Peyneau, J.-N. Roux, Phys. Rev. E 78, 011307 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    E. Azéma, F. Radjaï, J.-N. Roux, Phys. Rev. E 91, 010202(R) (2015)ADSCrossRefGoogle Scholar
  37. 37.
    N. Estrada, Phys. Rev. E 94, 062903 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    D. Vagberg, P. Olsson, S. Teitel, Phys. Rev. E 93, 052902 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    N. Estrada, W. Oquendo, Phys. Rev. E 96, 042907 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    O. Reynolds, Philos. Mag. 20, 469 (1885)CrossRefGoogle Scholar
  41. 41.
    E. Azéma, F. Radjai, R. Peyroux, G. Saussine, Phys. Rev. E 76, 011301 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    E. Azéma, N. Estrada, F. Radjaï, Phys. Rev. E 86, 041301 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    N. Estrada, E. Azéma, F. Radjai, A. Taboada, Phys. Rev. E 84, 011306 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    CEGEO, B. Saint-Cyr, K. Szarf, C. Voivret, E. Azéma, V. Richefeu, J.-Y. Delenne, G. Combe, C. Nouguier-Lehon, P. Villard, P. Sornay, M. Chaze, F. Radjai, EPL 98, 44008 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    J.-J. Moreau, Eur. J. Mech. A Solids 13, 93 (1994)Google Scholar
  46. 46.
    M. Jean, Comput. Methods Appl. Mech. Eng. 177, 235 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    J.-J. Moreau, An introduction to unilateral dynamics, in Novel Approaches in Civil Engineering, Lect. Notes Appl. Comput. Mech., Vol. 14, edited by M. Frémond, F. Maceri (Springer-Verlag, Berlin, 2004) pp. 1--46Google Scholar
  48. 48.
    F. Radjai, V. Richefeu, Mech. Mater. 41, 715 (2009)CrossRefGoogle Scholar
  49. 49.
    Farhang Radjai, Frédéric Dubois (Editors), Discrete Numerical Modeling of Granular Materials (Wiley-ISTE, New-York, March 2011) ISBN: 978-1-84821-260-2Google Scholar
  50. 50.
    F. Radjai, Physics of Dry Granular Media (Kluwer Academic Publishers, Dordrecht/Boston/London, 1997) Chapt. ``Multicontacts dynamics'', p. 305Google Scholar
  51. 51.
    G. Saussine, C. Cholet, P.E. Gautier, F. Dubois, C. Bohatier, J.J. Moreau, Comput. Methods Appl. Mech. Eng. 195, 2841 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    L. Staron, F. Radjai, Phys. Rev. E 72, 041308 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    S. Deboeuf, O. Dauchot, L. Staron, A. Mangeney, J.-P. Vilotte, Phys. Rev. E 72, 051305 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    E. Azéma, F. Radjaï, Phys. Rev. E 85, 031303 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    B. Saint-Cyr, C. Voivret, J.-Y. Delenne, F. Radjai, P. Sornay, Phys. Rev. E 84, 041302 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    E. Azéma, F. Radjaï, R. Peyroux, V. Richefeu, G. Saussine, Eur. Phys. J. E 26, 327 (2008)CrossRefGoogle Scholar
  57. 57.
    E. Azéma, Y. Descantes, N. Roquet, J.-N. Roux, F. Chevoir, Phys. Rev. E 86, 031303 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    A. Taboada, K.J. Chang, F. Radjai, F. Bouchette, J. Geophys. Res. 110, B09202 (2005)ADSCrossRefGoogle Scholar
  59. 59.
    C. Voivret, F. Radjai, J.-Y. Delenne, M.S. El Youssoufi, Phys. Rev. E 76, 021301 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    GDR-MiDi, Eur. Phys. J. E 14, 341 (2004)CrossRefGoogle Scholar
  61. 61.
    P. Jop, Y. Forterre, O. Pouliquen, Nature 441, 727 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    Y. Forterre, O. Pouliquen, Annu. Rev. Fluid Mech. 40, 1 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    Bruno Andreotti, Yoel Forterre, Olivier Pouliquen, Granular Media: Between Fluid and Solid (Cambridge University Press, 2013)Google Scholar
  64. 64.
    J.-J. Moreau, Numerical investigation of shear zones in granular materials, in Friction, Arching, Contact Dynamics, edited by D.E. Wolf, P. Grassberger (World Scientific, Singapore, 1997) pp. 233--247Google Scholar
  65. 65.
    P.-E. Peyneau, Étude du comportement et du compactage de pâtes granulaires par simulation numérique discrète discrète, PhD Thesis, Ecole Nationale des Ponts et Chaussées, France, 2009Google Scholar
  66. 66.
    D. Vagberg, P. Olsson, S. Teitel, Phys. Rev. E 95, 012902 (2017)ADSCrossRefGoogle Scholar
  67. 67.
    L. Rothenburg, R.J. Bathurst, Géotechnique 39, 601 (1989)CrossRefGoogle Scholar
  68. 68.
    E. Azéma, F. Radjai, G. Saussine, Mech. Mater. 41, 721 (2009)CrossRefGoogle Scholar
  69. 69.
    F. Radjai, J.-Y. Delenne, E. Azéma, S. Roux, Granular Matter 14, 259 (2012)CrossRefGoogle Scholar
  70. 70.
    M. Wyart, M. Cates, Phys. Rev. Lett. 112, 098302 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    R. Seto, R. Mari, J.F. Morris, M.M. Denn, Phys. Rev. Lett. 111, 218301 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    D. Vagberg, P. Olsson, S. Teitel, Phys. Rev. E 95, 052903 (2017)ADSCrossRefGoogle Scholar
  73. 73.
    A. Clavaud, X. Bérut, B. Metzger, Y. Forterre, Proc. Natl. Acad. Sci. U.S.A. 114, 5147 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Émilien Azéma
    • 1
  • Farhang Radjaï
    • 1
    • 2
  • Jean-Noël Roux
    • 3
  1. 1.Laboratoire de Mécanique et Génie Civil (LMGC)Université de Montpellier, CNRSMontpellierFrance
  2. 2.MSE2, UMI 3466 CNRS-MIT, CEEMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Université Paris-EstLaboratoire NavierChamps-sur-MarneFrance

Personalised recommendations