Skip to main content
Log in

Inertial shear flow of assemblies of frictionless polygons: Rheology and microstructure

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Motivated by the understanding of shape effects in granular materials, we numerically investigate the macroscopic and microstructural properties of anisotropic dense assemblies of frictionless polydisperse rigid pentagons in shear flow, and compare them with similar systems of disks. Once subjected to large cumulative shear strains their rheology and microstructure are investigated in uniform steady states, depending on inertial number I, which ranges from the quasistatic limit (\( I\sim 10^{-5}\)) to 0.2. In the quasistatic limit both systems are devoid of Reynolds dilatancy, i.e., flow at their random close packing density. Both macroscopic friction angle \( \varphi\), an increasing function of I , and solid fraction \( \nu\), a decreasing function of I, are larger with pentagons than with disks at small I, but the differences decline for larger I and, remarkably, nearly vanish for \( I\sim 0.2\). Under growing I , the depletion of contact networks is considerably slower with pentagons, in which increasingly anisotropic, but still well-connected force-transmitting structures are maintained throughout the studied range. Whereas contact anisotropy and force anisotropy contribute nearly equally to the shear strength in disk assemblies, the latter effect dominates with pentagons at small I, while the former takes over for I of the order of 10-2. The size of clusters of grains in side-to-side contact, typically comprising more than 10 pentagons in the quasistatic limit, very gradually decreases for growing I.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Cumberland, R.J. Crawford, The Packing of Particles (Elsevier, Amsterdam, 1987)

  2. T. Aste, D. Weaire, The Pursuit of Perfect Packing (Institute of Physics Publishing, Bristol, 2000)

  3. C. O'Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  4. A. Donev, S. Torquato, F.H. Stillinger, Phys. Rev. E 71, 011105 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. I. Agnolin, J.-N. Roux, Phys. Rev. E 76, 061302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Donev, F.H. Stillinger, P.M. Chaikin, S. Torquato, Phys. Rev. Lett. 92, 255506 (2004)

    Article  ADS  Google Scholar 

  7. A. Donev, I. Cisse, D. Sachs, E.A. Variano, F.H. Stillinger, R. Connelly, S. Torquato, P.M. Chaikin, Science 303, 990 (2004)

    Article  ADS  Google Scholar 

  8. W. Man, A. Donev, F.H. Stillinger, M.T. Sullivan, W.B. Russel, D. Heeger, S. Inati, S. Torquato, P.M. Chaikin, Phys. Rev. Lett. 94, 198001 (2005)

    Article  ADS  Google Scholar 

  9. S. Sacanna, L. Rossi, A. Wouterse, A.P. Philipse, J. Phys.: Condens. Matter 19, 376108 (2007)

    Google Scholar 

  10. E. Azéma, F. Radjaï, Phys. Rev. E 81, 051304 (2010)

    Article  ADS  Google Scholar 

  11. S. Torquato, Y. Jiao, Phys. Rev. E 80, 041104 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. K.C. Smith, M. Alam, T.S. Fisher, Phys. Rev. E 82, 051304 (2010)

    Article  ADS  Google Scholar 

  13. J. Baker, A. Kudrolli, Phys. Rev. E 82, 061304 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. Y. Jiao, F.H. Stillinger, S. Torquato, Phys. Rev. E 81, 041304 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. E. Azéma, F. Radjai, F. Dubois, Phys. Rev. E 87, 062203 (2013)

    Article  ADS  Google Scholar 

  16. E. Azéma, F. Radjai, B. Saint-Cyr, J.-Y. Delenne, P. Sornay, Phys. Rev. E 87, 052205 (2013)

    Article  ADS  Google Scholar 

  17. S. Torquato, T.M. Truskett, P.G. Debenedetti, Phys. Rev. Lett. 84, 2064 (2000)

    Article  ADS  Google Scholar 

  18. P. Chaudhuri, L. Berthier, S. Sastry, Phys. Rev. Lett. 104, 165701 (2010)

    Article  ADS  Google Scholar 

  19. J.-N. Roux, Phys. Rev. E 61, 6802 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Donev, R. Connelly, F.H Stillinger, S. Torquato, Phys. Rev. E 75, 051304 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Wyart, S.R. Nagel, T.A. Witten, Europhys. Lett. 72, 486 (2005)

    Article  ADS  Google Scholar 

  22. C. Voivret, F. Radjai, J.-Y. Delenne, M.S. El Youssoufi, Phys. Rev. Lett. 102, 178001 (2009)

    Article  ADS  Google Scholar 

  23. T.-T. Ng, Mech. Mater. 41, 748 (2009)

    Article  Google Scholar 

  24. K. Szarf, G. Combe, P. Villard, Powder Technol. 208, 279 (2011)

    Article  Google Scholar 

  25. D.-H. Nguyen, E. Azéma, F. Radjai, P. Sornay, Phys. Rev. E 91, 032203 (2015)

    Article  ADS  Google Scholar 

  26. J. Katagiri, T. Matsushima, Y. Yamada, Granular Matter 16, 891 (2014)

    Article  Google Scholar 

  27. R. Kawamoto, E. Ando, G. Viggiana, J.E. Andrade, J. Mech. Phys. Solids 111, 375 (2018)

    Article  Google Scholar 

  28. F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, F. Chevoir, Phys. Rev. E 72, 021309 (2005)

    Article  ADS  Google Scholar 

  29. T. Hatano, Phys. Rev. E 75, 060301(R) (2007)

    Article  ADS  Google Scholar 

  30. E. Azéma, F. Radjai, Phys. Rev. Lett. 112, 078001 (2014)

    Article  ADS  Google Scholar 

  31. J.-N. Roux, F. Chevoir, Dimensional Analysis and Control Parameters, in Discrete-Element Modeling of Granular Materials, edited by F. Radjai, F. Dubois, (Wiley, 2011) pp. 199--232

  32. H. Troadec, F. Radjai, S. Roux, J.-C. Charmet, Phys. Rev. E 66, 041305 (2002)

    Article  ADS  Google Scholar 

  33. G. Combe, J.-N. Roux, Phys. Rev. Lett. 85, 3628 (2000)

    Article  ADS  Google Scholar 

  34. P.-E. Peyneau, J.-N. Roux, Phys. Rev. E 78, 041307 (2008)

    Article  ADS  Google Scholar 

  35. P.-E. Peyneau, J.-N. Roux, Phys. Rev. E 78, 011307 (2008)

    Article  ADS  Google Scholar 

  36. E. Azéma, F. Radjaï, J.-N. Roux, Phys. Rev. E 91, 010202(R) (2015)

    Article  ADS  Google Scholar 

  37. N. Estrada, Phys. Rev. E 94, 062903 (2016)

    Article  ADS  Google Scholar 

  38. D. Vagberg, P. Olsson, S. Teitel, Phys. Rev. E 93, 052902 (2016)

    Article  ADS  Google Scholar 

  39. N. Estrada, W. Oquendo, Phys. Rev. E 96, 042907 (2017)

    Article  ADS  Google Scholar 

  40. O. Reynolds, Philos. Mag. 20, 469 (1885)

    Article  Google Scholar 

  41. E. Azéma, F. Radjai, R. Peyroux, G. Saussine, Phys. Rev. E 76, 011301 (2007)

    Article  ADS  Google Scholar 

  42. E. Azéma, N. Estrada, F. Radjaï, Phys. Rev. E 86, 041301 (2012)

    Article  ADS  Google Scholar 

  43. N. Estrada, E. Azéma, F. Radjai, A. Taboada, Phys. Rev. E 84, 011306 (2011)

    Article  ADS  Google Scholar 

  44. CEGEO, B. Saint-Cyr, K. Szarf, C. Voivret, E. Azéma, V. Richefeu, J.-Y. Delenne, G. Combe, C. Nouguier-Lehon, P. Villard, P. Sornay, M. Chaze, F. Radjai, EPL 98, 44008 (2012)

    Article  ADS  Google Scholar 

  45. J.-J. Moreau, Eur. J. Mech. A Solids 13, 93 (1994)

    Google Scholar 

  46. M. Jean, Comput. Methods Appl. Mech. Eng. 177, 235 (1999)

    Article  ADS  Google Scholar 

  47. J.-J. Moreau, An introduction to unilateral dynamics, in Novel Approaches in Civil Engineering, Lect. Notes Appl. Comput. Mech., Vol. 14, edited by M. Frémond, F. Maceri (Springer-Verlag, Berlin, 2004) pp. 1--46

  48. F. Radjai, V. Richefeu, Mech. Mater. 41, 715 (2009)

    Article  Google Scholar 

  49. Farhang Radjai, Frédéric Dubois (Editors), Discrete Numerical Modeling of Granular Materials (Wiley-ISTE, New-York, March 2011) ISBN: 978-1-84821-260-2

  50. F. Radjai, Physics of Dry Granular Media (Kluwer Academic Publishers, Dordrecht/Boston/London, 1997) Chapt. ``Multicontacts dynamics'', p. 305

  51. G. Saussine, C. Cholet, P.E. Gautier, F. Dubois, C. Bohatier, J.J. Moreau, Comput. Methods Appl. Mech. Eng. 195, 2841 (2006)

    Article  ADS  Google Scholar 

  52. L. Staron, F. Radjai, Phys. Rev. E 72, 041308 (2005)

    Article  ADS  Google Scholar 

  53. S. Deboeuf, O. Dauchot, L. Staron, A. Mangeney, J.-P. Vilotte, Phys. Rev. E 72, 051305 (2005)

    Article  ADS  Google Scholar 

  54. E. Azéma, F. Radjaï, Phys. Rev. E 85, 031303 (2012)

    Article  ADS  Google Scholar 

  55. B. Saint-Cyr, C. Voivret, J.-Y. Delenne, F. Radjai, P. Sornay, Phys. Rev. E 84, 041302 (2011)

    Article  ADS  Google Scholar 

  56. E. Azéma, F. Radjaï, R. Peyroux, V. Richefeu, G. Saussine, Eur. Phys. J. E 26, 327 (2008)

    Article  Google Scholar 

  57. E. Azéma, Y. Descantes, N. Roquet, J.-N. Roux, F. Chevoir, Phys. Rev. E 86, 031303 (2012)

    Article  ADS  Google Scholar 

  58. A. Taboada, K.J. Chang, F. Radjai, F. Bouchette, J. Geophys. Res. 110, B09202 (2005)

    Article  ADS  Google Scholar 

  59. C. Voivret, F. Radjai, J.-Y. Delenne, M.S. El Youssoufi, Phys. Rev. E 76, 021301 (2007)

    Article  ADS  Google Scholar 

  60. GDR-MiDi, Eur. Phys. J. E 14, 341 (2004)

    Article  Google Scholar 

  61. P. Jop, Y. Forterre, O. Pouliquen, Nature 441, 727 (2006)

    Article  ADS  Google Scholar 

  62. Y. Forterre, O. Pouliquen, Annu. Rev. Fluid Mech. 40, 1 (2008)

    Article  ADS  Google Scholar 

  63. Bruno Andreotti, Yoel Forterre, Olivier Pouliquen, Granular Media: Between Fluid and Solid (Cambridge University Press, 2013)

  64. J.-J. Moreau, Numerical investigation of shear zones in granular materials, in Friction, Arching, Contact Dynamics, edited by D.E. Wolf, P. Grassberger (World Scientific, Singapore, 1997) pp. 233--247

  65. P.-E. Peyneau, Étude du comportement et du compactage de pâtes granulaires par simulation numérique discrète discrète, PhD Thesis, Ecole Nationale des Ponts et Chaussées, France, 2009

  66. D. Vagberg, P. Olsson, S. Teitel, Phys. Rev. E 95, 012902 (2017)

    Article  ADS  Google Scholar 

  67. L. Rothenburg, R.J. Bathurst, Géotechnique 39, 601 (1989)

    Article  Google Scholar 

  68. E. Azéma, F. Radjai, G. Saussine, Mech. Mater. 41, 721 (2009)

    Article  Google Scholar 

  69. F. Radjai, J.-Y. Delenne, E. Azéma, S. Roux, Granular Matter 14, 259 (2012)

    Article  Google Scholar 

  70. M. Wyart, M. Cates, Phys. Rev. Lett. 112, 098302 (2014)

    Article  ADS  Google Scholar 

  71. R. Seto, R. Mari, J.F. Morris, M.M. Denn, Phys. Rev. Lett. 111, 218301 (2013)

    Article  ADS  Google Scholar 

  72. D. Vagberg, P. Olsson, S. Teitel, Phys. Rev. E 95, 052903 (2017)

    Article  ADS  Google Scholar 

  73. A. Clavaud, X. Bérut, B. Metzger, Y. Forterre, Proc. Natl. Acad. Sci. U.S.A. 114, 5147 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Émilien Azéma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azéma, É., Radjaï, F. & Roux, JN. Inertial shear flow of assemblies of frictionless polygons: Rheology and microstructure. Eur. Phys. J. E 41, 2 (2018). https://doi.org/10.1140/epje/i2018-11608-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11608-9

Keywords

Navigation