Dynamical heterogeneities and mechanical non-linearities: Modeling the onset of plasticity in polymer in the glass transition

  • R. J. Masurel
  • P. Gelineau
  • F. Lequeux
  • S. Cantournet
  • H. Montes
Regular Article
  • 39 Downloads

Abstract.

In this paper we focus on the role of dynamical heterogeneities on the non-linear response of polymers in the glass transition domain. We start from a simple coarse-grained model that assumes a random distribution of the initial local relaxation times and that quantitatively describes the linear viscoelasticity of a polymer in the glass transition regime. We extend this model to non-linear mechanics assuming a local Eyring stress dependence of the relaxation times. Implementing the model in a finite element mechanics code, we derive the mechanical properties and the local mechanical fields at the beginning of the non-linear regime. The model predicts a narrowing of distribution of relaxation times and the storage of a part of the mechanical energy --internal stress-- transferred to the material during stretching in this temperature range. We show that the stress field is not spatially correlated under and after loading and follows a Gaussian distribution. In addition the strain field exhibits shear bands, but the strain distribution is narrow. Hence, most of the mechanical quantities can be calculated analytically, in a very good approximation, with the simple assumption that the strain rate is constant.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    U. Tracht, M. Wilhelm, A. Heuer, H.W. Spiess, J. Magn. Reson. 140, 460 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    D. Long, F. Lequeux, Eur. Phys. J. E 4, 371 (2002)CrossRefGoogle Scholar
  4. 4.
    S. Merabia, D. Long, Eur. Phys. J. E 9, 195 (2002)CrossRefGoogle Scholar
  5. 5.
    S. Merabia, P. Sotta, D. Long, Eur. Phys. J. E 15, 189 (2004)CrossRefGoogle Scholar
  6. 6.
    S. Merabia, D. Long, J. Chem. Phys. 125, 234901 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    A. Dequidt, D. Long, P. Sotta, O. Sanséau, Eur. Phys. J. E 35, 61 (2012)CrossRefGoogle Scholar
  8. 8.
    R.J. Masurel, S. Cantournet, A. Dequidt, D. Long, H. Montes, F. Lequeux, Macromolecules 48, 6690 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    N.B. Tito, J.E.G. Lipson, S.T. Milner, Soft Matter 9, 3173 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    J.E.G. Lipson, S.T. Milner, Eur. Phys. J. B 72, 133 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    R.J. Masurel, P. Gelineau, D.R. Long, A. Dequidt, S. Cantournet, F. Lequeux, H. Montes, Phys. Rev. Lett. 118, 047801 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Nanzai, Prog. Polym. Sci. 18, 437 (1993)CrossRefGoogle Scholar
  13. 13.
    L.S. Loo, R.E. Cohen, K.K. Gleason, Science 288, 116 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    R. Pérez-Aparicio, D. Cottinet, C. Crauste-Thibierge, L. Vanel, P. Sotta, J.Y. Delannoy, D.R. Long, S. Ciliberto, Macromolecules 49, 3889 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    J. Kalfus, A. Detwiler, A.J. Lesser, Macromolecules 45, 4839 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    H.N. Lee, R.A. Riggleman, J.J. de Pablo, M.D. Ediger, Macromolecules 42, 4328 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    B. Bending, K. Christison, J. Ricci, M.D. Ediger, Macromolecules 47, 800 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    H.N. Lee, K. Paeng, S.F. Swallen, M.D. Ediger, Science 323, 231 (2009)CrossRefGoogle Scholar
  19. 19.
    R.A. Riggleman, H.N. Lee, M.D. Ediger, J.J. de Pablo, Soft Matter 6, 287 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    H.N. Lee, K. Paeng, S.F. Swallen, M.D. Ediger, J. Chem. Phys. 128, 134902 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    O.B. Salamatina, S.N. Rudnev, V.V. Voenniy, E.F. Oleynik, J. Therm. Anal. 38, 1271 (1992)CrossRefGoogle Scholar
  22. 22.
    O.A. Hasan, M.C. Boyce, Polymer 34, 5085 (1993)CrossRefGoogle Scholar
  23. 23.
    Y. Nanzai, J. Non-Cryst. Solids 307--310, 481 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    M.C. Boyce, E.L. Montagut, A.S. Argon, Polym. Eng. Sci. 32, 1073 (1992)CrossRefGoogle Scholar
  25. 25.
    O.A. Hasan, M.C. Boyce, Polym. Eng. Sci. 35, 331 (1995)CrossRefGoogle Scholar
  26. 26.
    E. Kontou, G. Spathis, Polym. Eng. Sci. 38, 1443 (1998)CrossRefGoogle Scholar
  27. 27.
    G. Spathis, Mater. Sci. 43, 7192 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    T.D. Nguyen, J.H. Qi, H.F. Castro, K.N.A. Long, J. Mech. Phys. Solids 56, 2792 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    H. Eyring, J. Chem. Phys. 4, 283 (1936)ADSCrossRefGoogle Scholar
  30. 30.
    T. Ree, H. Eyring, J. Appl. Phys. 26, 800 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    D.D. Rodney, A. Tanguy, D. Vandembroucq, Model. Simul. Mater. Sci. Eng. 19, 083001 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    P. Sollich, F. Lequeux, P. Hebraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    F. Lequeux, A. Ajdari, Phys. Rev. E 63, 030502 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    R. Radhakrishnan, S.M. Fielding, Phys. Rev. Lett. 117, 188001 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    G.A. Medvedev, J.M. Caruthers, J. Rheol. 57, 949 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    A. Dequidt, L. Conca, J.Y. Delannoy, P. Sotta, F. Lequeux, D.R. Long, Macromolecules 49, 9148 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    M.C. Boyce, D.M. Parks, A.S. Argon, Mech. Mater. 7, 15 (1988)CrossRefGoogle Scholar
  38. 38.
    L.E. Govaert, P.H.M. Timmermans, W.A. Brkelmans, J. Eng. Mater. Technol. 122, 177 (2000)CrossRefGoogle Scholar
  39. 39.
    E.T.J. Klompen, T.A.P. Engels, L.E. Govaert, H.E.H. Meijer, Macromolecules 38, 6997 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    J. Rottler, M.O. Robbins, Phys. Rev. Lett. 95, 225504 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    R. Quinson, J. Perez, M. Rink, A. Pavan, J. Mater. Sci. 32, 1371 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    J.L. Halary, F. Laupretre, L. Monnerie, Polymer Materials: Macroscopic Properties and Molecular Interpretations (John Wiley & Sons, 2011)Google Scholar
  43. 43.
  44. 44.
    D. Ryckelynck, F. Vincent, S. Cantournet, Comput. Methods Appl. Mech. Eng. 225, 28 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Int. J. Solids Struct. 40, 3647 (2003)CrossRefGoogle Scholar
  46. 46.
    I.M. Ward, Mechanical Properties of Solid Polymers, 2nd edition (John Wiley, 1983)Google Scholar
  47. 47.
    A.V. Lyulin, N.K. Balabaev, A.M.A. Mazo, M.A. Michels, Macromolecules 37, 8785 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    J. Li, T. Mulder, B. Vorselaars, A.V. Lyulin, M.A.J. Michels, Macromolecules 39, 7774 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    N.K. Balabaev, M.A. Mazo, A. Lyulin, E.F. Oleinik, Polym. Sci. Ser. A 52, 633 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • R. J. Masurel
    • 1
  • P. Gelineau
    • 1
  • F. Lequeux
    • 1
  • S. Cantournet
    • 2
  • H. Montes
    • 1
  1. 1.CNRS UPMC ESPCI ParisTech PSL Res Univ, Lab. SIMM, UMR 7615ParisFrance
  2. 2.MINES ParisTechPSL-Research University, MAT - Centre des Matériaux, CNRS UMR 7633EvryFrance

Personalised recommendations