Resonant reshaping of colloidal clusters on a current carrying wire

  • Lydiane Becu
  • Marc Basler
  • Miodrag L. Kulić
  • Igor M. Kulić
Regular Article


Colloids in confined geometries promise a path towards tailored microscopic superstructures. Yet, a major roadblock is posed by kinetically trapped states that prevent the assemblies from reaching their anticipated shapes. We investigate magnetic colloids trapped on a cylindrical surface of a current carrying wire. If kinetic traps could be avoided the wire’s surface would act as an ideal mold for colloidal rings and helical fibers. We devise here a way to dynamically shake down the clusters and avoid kinetic traps in their energy landscape. A low frequency magnetic modulation wave around the wire axis effectively eliminates defects from the clusters and stretches them into slender rings and helical filaments. A theoretical model is developed that qualitatively explains the observed resonant reshaping response of clusters.

Graphical abstract


Soft Matter: Colloids and Nanoparticles 


  1. 1.
    L.E. Helseth, R.M. Muruganathan, Y. Zhang, T.M. Fischer, Langmuir 21, 7271 (2005)CrossRefGoogle Scholar
  2. 2.
    R.M. Erb, H.S. Son, B. Samanta, V.M. Rotello, B.B. Yellen, Nature 457, 999 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    D. Zerrouki, J. Baudry, D. Pine, P. Chaikin, J. Bibette, Nature 455, 380 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    J. Yan, K. Chaudhary, S.C. Bae, J.A. Lewis, S. Granick, Nat. Commun. 4, 1516 (2013)CrossRefGoogle Scholar
  5. 5.
    J.E. Martin, R.A. Anderson, R.L. Williamson, J. Chem. Phys. 118, 1557 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    J.E. Martin, E. Venturini, G.L. Gulley, J. Williamson, Phys. Rev. E 69, 021508 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    I.M. Kulić, M.L. Kulić, Phys. Rev. Lett. 111, 198301 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    I.M. Kulić, M.L. Kulić, Phys. Rev. E 90, 062313 (2014)ADSGoogle Scholar
  9. 9.
    N. Osterman, I. Poberaj, J. Dobnikar, D. Frenkel, P. Ziherl, D. Babić, Phys. Rev. Lett. 103, 228301 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    G. Kokot, J.S. Zemljić, U. Batista, D. Babić, Langmuir 31, 9576 (2015)CrossRefGoogle Scholar
  11. 11.
    Pietro Tierno, Phys. Chem. Chem. Phys. 16, 23515 (2014)CrossRefGoogle Scholar
  12. 12.
    J.E. Martin, A. Snezhko, Rep. Prog. Phys. 76, 126601 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    A. Snezhko, I.S. Aranson, W.-K. Kwok, Phys. Rev. Lett. 96, 078701 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    A.P. Philipse, D. Maas, Langmuir 18, 9977 (2002)CrossRefGoogle Scholar
  15. 15.
    Christian Kreuter, PhD Thesis, Konstanz University (2012)Google Scholar
  16. 16.
    K. Zahn, R. Lenke, G. Maret, Phys. Rev. Lett. 82, 2721 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    H. König, R. Hund, K. Zahn, G. Maret, Eur. Phys. J. E 18, 287 (2005)CrossRefGoogle Scholar
  18. 18.
    L.N. Bulaevskii, V.V. Kuzii, A.I. Sobyanin, JETP Lett. 25, 290 (1977)ADSGoogle Scholar
  19. 19.
    L.N. Bulaevskii, V.V. Kuzii, A.I. Sobyanin, Solid State Commun. 25, 1053 (1978)ADSCrossRefGoogle Scholar
  20. 20.
    F. Pedaci, Z. Huang, M. van Oene, S. Barland, N.H. Dekker, Nat. Phys. 7, 259 (2011)CrossRefGoogle Scholar
  21. 21.
    P. Tierno, T.H. Johansen, T.M. Fischer, Phys. Rev. Lett. 99, 038303 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    P. Tierno, F. Sagués, T.H. Johansen, T.M. Fischerer, Phys. Chem. Chem. Phys. 11, 9615 (2009)CrossRefGoogle Scholar
  23. 23.
    I.M. Kulić, M.L. Kulić, in preparationGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Lydiane Becu
    • 1
  • Marc Basler
    • 2
  • Miodrag L. Kulić
    • 3
    • 4
  • Igor M. Kulić
    • 2
  1. 1.Université de Lorraine, LCP-A2MC, Institut de Chimie, Physique et MatériauxMetzFrance
  2. 2.CNRS, Institute Charles SadronStrasbourgFrance
  3. 3.Institute for Theoretical PhysicsGoethe-UniversityFrankfurt am MainGermany
  4. 4.Institute of PhysicsBelgradeSerbia

Personalised recommendations