Do hydrodynamically assisted binary collisions lead to orientational ordering of microswimmers?

  • Norihiro Oyama
  • John Jairo Molina
  • Ryoichi Yamamoto
Regular Article
  • 15 Downloads

Abstract.

We have investigated the onset of collective motion in systems of model microswimmers, by performing a comprehensive analysis of the binary collision dynamics using three-dimensional direct numerical simulations (DNS) with hydrodynamic interactions. From this data, we have constructed a simplified binary collision model (BCM) which accurately reproduces the collective behavior obtained from the DNS for most cases. Thus, we show that global alignment can mostly arise solely from binary collisions. Although the agreement between both models (DNS and BCM) is not perfect, the parameter range in which notable differences appear is also that for which strong density fluctuations are present in the system (where pseudo-sound mound can be observed (N. Oyama et al., Phys. Rev. E 93, 043114 (2016))).

Graphical abstract

Keywords

Living systems: Biomimetic Systems 

Supplementary material

10189_2017_11586_MOESM1_ESM.pdf (556 kb)
Supplementary material

References

  1. 1.
    T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    N. Oyama, J.J. Molina, R. Yamamoto, Phys. Rev. E 93, 043114 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    E. Lushi, H. Wioland, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 111, 9733 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    B. Ezhilan, M.J. Shelley, D. Saintillan, Phys. Fluids 25, 070607 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, F. Raynaud, Eur. Phys. J. B 64, 451 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    S. Bazazi, J. Buhl, J.J. Hale, M.L. Anstey, G.A. Sword, S.J. Simpson, I.D. Couzin, Curr. Biol. 18, 735 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Buhl, D.J.T. Sumpter, I.D. Couzin, J.J. Hale, E. Despland, E.R. Miller, S.J. Simpson, Science 312, 1402 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    A. Zöttl, H. Stark, J. Phys.: Condens. Matter 28, 253001 (2016)ADSGoogle Scholar
  10. 10.
    M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic, Proc. Natl. Acad. Sci. U.S.A. 105, 1232 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    D. Volfson, S. Cookson, J. Hasty, L.S. Tsimring, Proc. Natl. Acad. Sci. U.S.A. 105, 15346 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    R. Lukeman, Y.-X. Li, L. Edelstein-Keshet, Proc. Natl. Acad. Sci. U.S.A. 107, 12576 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Nature 467, 73 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Evans, T. Ishikawa, T. Yamaguchi, E. Lauga, Phys. Fluids 23, 111702 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    S. Rafaï, L. Jibuti, P. Peyla, Phys. Rev. Lett. 104, 098102 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    K. Kyoya, D. Matsunaga, Y. Imai, T. Omori, T. Ishikawa, Phys. Rev. E 92, 1 (2015)CrossRefGoogle Scholar
  17. 17.
    F. Alarcón Oseguera, PhD Thesis, Universitat de Barcelona (2015)Google Scholar
  18. 18.
    F. Alarcón, I. Pagonabarraga, J. Mol. Liq. 185, 56 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Zöttl, H. Stark, Phys. Rev. Lett. 112, 118101 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    G.-J. Li, A.M. Ardekani, Phys. Rev. E 90, 013010 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    R.M. Navarro, S.M. Fielding, Soft Matter 11, 7525 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    R. Matas-Navarro, R. Golestanian, T.B. Liverpool, S.M. Fielding, Phys. Rev. E 90, 032304 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    T. Ishikawa, T.J. Pedley, Phys. Rev. E 90, 033008 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    T. Ishikawa, J.T. Locsei, T.J. Pedley, Phys. Rev. E 82, 021408 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    D. Giacché, T. Ishikawa, J. Theor. Biol. 267, 252 (2010)CrossRefGoogle Scholar
  26. 26.
    T. Ishikawa, T.J. Pedley, Phys. Rev. Lett. 100, 088103 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    T. Ishikawa, T.J. Pedley, J. Fluid Mech. 588, 437 (2007)ADSMathSciNetGoogle Scholar
  28. 28.
    T. Ishikawa, T.J. Pedley, J. Fluid Mech. 588, 399 (2007)ADSMathSciNetGoogle Scholar
  29. 29.
    T. Ishikawa, M.P. Simmonds, T.J. Pedley, J. Fluid Mech. 568, 119 (2006)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    T. Ishikawa, M. Hota, J. Exp. Biol. 209, 4452 (2006)CrossRefGoogle Scholar
  31. 31.
    J.J. Molina, Y. Nakayama, R. Yamamoto, Soft Matter 9, 4923 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    J.-B. Delfau, J. Molina, M. Sano, EPL 114, 24001 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    M.J. Lighthill, Commun. Pure Appl. Math. 5, 109 (1952)CrossRefGoogle Scholar
  34. 34.
    J.R. Blake, J. Fluid Mech. 46, 199 (1971)ADSCrossRefGoogle Scholar
  35. 35.
    D.I. Dratler, W.R. Schowalter, J. Fluid Mech. 325, 53 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Nakayama, R. Yamamoto, Phys. Rev. E 71, 036707 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    K. Kim, Y. Nakayama, R. Yamamoto, Phys. Rev. Lett. 96, 1 (2006)Google Scholar
  38. 38.
    Y. Nakayama, K. Kim, R. Yamamoto, Eur. Phys. J. E 26, 361 (2008)CrossRefGoogle Scholar
  39. 39.
    R. Aditi Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Katz, K. Tunstrom, C.C. Ioannou, C. Huepe, I.D. Couzin, Proc. Natl. Acad. Sci. 108, 18720 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    T. Hanke, C.A. Weber, E. Frey, Phys. Rev. E 88, 052309 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    K.-D.N.T. Lam, M. Schindler, O. Dauchot, New J. Phys. 17, 113056 (2015)CrossRefGoogle Scholar
  43. 43.
    R. Suzuki, C.A. Weber, E. Frey, A.R. Bausch, Nat. Phys. 11, 839 (2015)CrossRefGoogle Scholar
  44. 44.
    T. Hiraoka, T. Shimada, N. Ito, Phys. Rev. E 94, 062612 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Norihiro Oyama
    • 1
  • John Jairo Molina
    • 2
  • Ryoichi Yamamoto
    • 2
    • 3
  1. 1.Mathematics for Advanced Materials-OILAIST-Tohoku UniversitySendaiJapan
  2. 2.Department of Chemical EngineeringKyoto UniversityKyotoJapan
  3. 3.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations