Kirkwood-Buff integrals for hard-core Yukawa fluids

Regular Article
  • 30 Downloads

Abstract.

The Kirkwood-Buff (KB) theory of solution is employed to investigate several macroscopic properties of the one-component hard-core Yukawa (HCY) fluid, where the key physical quantities are the KB integrals (KBIs). For both repulsive and attractive HCY fluids, the radial distribution functions are calculated by using the classical density functional theory, and then the corresponding KBIs are carried out. Since the local structure and global properties of a fluid can be related by KBI, we presented the isothermal compressibility and the derivative of the chemical potential with respect to bulk density for both repulsive and attractive HCY fluids. It is found that a transition of the affinity of particles in an attractive HCY fluid exists. The corresponding phase diagrams on the affinity are illustrated, which consist of repulsive and attractive regions with the boundary line of KBIs being zero. These results show that the aggregated structure of a HCY fluid can be effectively regulated by the screening parameter, bulk density and interaction energy, while KBIs can provide a quantitative reliable description on the properties of HCY fluids.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 19, 774 (1951)ADSCrossRefGoogle Scholar
  2. 2.
    E. Matteoli, G.A. Mansoori, Fluctuation Theory of Mixtures (Taylor & Francis, New York, 1990)Google Scholar
  3. 3.
    P.E. Smith, J. Chem. Phys. 129, 124509 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    A. Ben-Naim, J. Chem. Phys. 128, 084510 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    A. Ben-Naim, J. Chem. Phys. 67, 4884 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    S. Shimizu, Proc. Natl. Acad. Sci. U.S.A. 101, 1195 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    A. Perera, F. Sokolić, L. Almásy, Y. Koga, J. Chem. Phys. 124, 124515 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    J.W. Nichols, S.G. Moore, D.R. Wheeler, Phys. Rev. E 80, 051203 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    P. Krüger, S.K. Schnell, D. Bedeaux, S. Kjelstrup, T.J.H. Vlugt, J.M. Simon, J. Phys. Chem. Lett. 4, 235 (2013)CrossRefGoogle Scholar
  10. 10.
    P. Ganguly, N.F.A. van der Vegt, J. Chem. Theory Comput. 9, 1347 (2013)CrossRefGoogle Scholar
  11. 11.
    W. Dednam, A.E. Botha, J. Phys.: Conf. Ser. 574, 012092 (2015)Google Scholar
  12. 12.
    A. Ben-Naim, J. Chem. Phys. 128, 234501 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    A. Ben-Naim, Molecular Theory of Solutions (Oxford University Press, Oxford, 2006)Google Scholar
  14. 14.
    A.K. Nain, J. Solut. Chem. 37, 1541 (2008)CrossRefGoogle Scholar
  15. 15.
    E. Matteoli, L. Lepori, J. Chem. Soc., Faraday Trans. 91, 431 (1995)CrossRefGoogle Scholar
  16. 16.
    E. Matteoli, J. Phys. Chem. B 101, 9800 (1997)CrossRefGoogle Scholar
  17. 17.
    D. Banerjee, A.K. Laha, P. Chatterjee, S. Bagchi, J. Solut. Chem. 24, 301 (1995)CrossRefGoogle Scholar
  18. 18.
    B. García, S. Aparicio, R. Alcalde, J.M. Leal, J. Phys. Chem. B 107, 13478 (2003)CrossRefGoogle Scholar
  19. 19.
    S. Shimizu, C.L. Boon, J. Chem. Phys. 121, 9147 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Marcus, J. Mol. Liq. 128, 115 (2006)CrossRefGoogle Scholar
  21. 21.
    Y. Marcus, J. Chem. Thermodyn. 39, 1338 (2007)CrossRefGoogle Scholar
  22. 22.
    M.B. Gee, P.E. Smith, J. Chem. Phys. 131, 165101 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    A. Ben-Naim, J. Chem. Phys. 138, 224906 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    R. Chitra, P.E. Smith, J. Phys. Chem. B 105, 11513 (2001)CrossRefGoogle Scholar
  25. 25.
    P.E. Smith, J. Phys. Chem. B 108, 18716 (2004)CrossRefGoogle Scholar
  26. 26.
    V. Pierce, M. Kang, M. Aburi, S. Weerasinghe, P.E. Smith, Cell Biochem. Biophys. 50, 1 (2007)CrossRefGoogle Scholar
  27. 27.
    Y.J. Kwon, G.A. Mansoori, J. Supercrit. Fluids 6, 173 (1993)CrossRefGoogle Scholar
  28. 28.
    E. Ruckenstein, I.L. Shulgin, Thermodynamics of Solutions From Gases to Pharmaceutics to Proteins (Springer-Verlag, New York, 2009)Google Scholar
  29. 29.
    P.E. Smith, J. Phys. Chem. B 110, 2862 (2006)CrossRefGoogle Scholar
  30. 30.
    S. Weerasinghe, P.E. Smith, J. Chem. Phys. 118, 10663 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    S. Weerasinghe, P.E. Smith, J. Chem. Phys. 121, 2180 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    S. Weerasinghe, P.E. Smith, J. Phys. Chem. B 109, 15080 (2005)CrossRefGoogle Scholar
  33. 33.
    N. Bentenitis, N.R. Cox, P.E. Smith, J. Phys. Chem. B 113, 12306 (2009)CrossRefGoogle Scholar
  34. 34.
    M.B. Gee, N.R. Cox, Y. Jiao, N. Bentenitis, S. Weerasinghe, P.E. Smith, J. Chem. Theory Comput. 7, 1369 (2011)CrossRefGoogle Scholar
  35. 35.
    E. Lomba, N.G. Almarza, J. Chem. Phys. 100, 8367 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    M. Gonzlez-Melchor, A. Trokhymchuk, J. Alejandre, J. Chem. Phys. 115, 3862 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    M. Heinen, P. Holmqvist, A.J. Banchio, G. Nägele, J. Chem. Phys. 134, 044532 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    M. Bouaskarne, S. Amokrane, C. Regnaut, J. Chem. Phys. 111, 2151 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    H. Guérin, J. Phys.: Condens. Matter 10, L527 (1998)Google Scholar
  40. 40.
    J. Wu, J. Cao, J. Phys. Chem. B 109, 21342 (2005)CrossRefGoogle Scholar
  41. 41.
    C. Caccamo, G. Pellicane, D. Costa, J. Phys.: Condens. Matter 12, 437 (2000)ADSGoogle Scholar
  42. 42.
    H. Totsuji, T. Kishimoto, C. Totsuji, Phys. Rev. Lett. 78, 3113 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    B. Davoudi, M. Kohandel, M. Mohammadi, B. Tanatar, Phys. Rev. E 62, 6977 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    F. Gu, H.J. Wang, J.T. Li, Phys. Rev. E 85, 056402 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 3rd edition (Academic Press, Burlington, 2006)Google Scholar
  46. 46.
    Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989)ADSCrossRefGoogle Scholar
  47. 47.
    R. Roth, R. Evans, A. Lang, G. Kahl, J. Phys.: Condens. Matter 14, 12063 (2002)ADSGoogle Scholar
  48. 48.
    Y.X. Yu, J.Z. Wu, J. Chem. Phys. 117, 10156 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    E. Waisman, Mol. Phys. 25, 45 (1973)ADSCrossRefGoogle Scholar
  50. 50.
    J. Høye, G. Stell, Mol. Phys. 32, 195 (1976)ADSCrossRefGoogle Scholar
  51. 51.
    J. Høye, G. Stell, E. Waisman, Mol. Phys. 32, 209 (1976)ADSCrossRefGoogle Scholar
  52. 52.
    M. Ginoza, Mol. Phys. 71, 145 (1990)ADSCrossRefGoogle Scholar
  53. 53.
    L. Blum, J.N. Herrera, Mol. Phys. 96, 821 (1999)ADSCrossRefGoogle Scholar
  54. 54.
    L. Blum, M. Ubriaco, Mol. Phys. 98, 829 (2000)ADSCrossRefGoogle Scholar
  55. 55.
    D. Henderson, G. Stell, E. Waisman, J. Chem. Phys. 62, 4247 (1975)ADSCrossRefGoogle Scholar
  56. 56.
    D. Henderson, L. Blum, J.P. Noworyta, J. Chem. Phys. 102, 4973 (1995)ADSCrossRefGoogle Scholar
  57. 57.
    Y.P. Tang, J. Chem. Phys. 118, 4140 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    Y.P. Tang, J. Chem. Phys. 121, 10605 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    Y. Kalyuzhnyi, P. Cummings, Mol. Phys. 87, 1459 (1996)ADSGoogle Scholar
  60. 60.
    Y.P. Tang, J.Z. Wu, Phys. Rev. E 70, 011201 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    Y.P. Tang, Y.Z. Lin, Y.G. Li, J. Chem. Phys. 122, 184505 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    J. Torres-Arenas, L.A. Cervantes, A.L. Benavides, G.A. Chapela, F. del Ro, J. Chem. Phys. 132, 034501 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    Y.X. Yu, F.Q. You, Y.P. Tang, G.H. Gao, Y.G. Li, J. Phys. Chem. B 110, 334 (2006)CrossRefGoogle Scholar
  64. 64.
    A. Giacometti, G. Pastore, F. Lado, Mol. Phys. 107, 555 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Han-Fei Chen
    • 1
  • Jiang-Tao Li
    • 1
  • Fang Gu
    • 1
  • Hai-Jun Wang
    • 1
    • 2
    • 3
  1. 1.College of Chemistry and Environmental ScienceHebei UniversityBaodingChina
  2. 2.Chemical Biology Key Laboratory of Hebei ProvinceHebei UniversityBaodingChina
  3. 3.Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of EducationHebei UniversityBaodingChina

Personalised recommendations