Random field Ising model in a uniform magnetic field: Ground states, pinned clusters and scaling laws

Regular Article
  • 26 Downloads

Abstract.

In this paper, we study the random field Ising model (RFIM) in an external magnetic field h . A computationally efficient graph-cut method is used to study ground state (GS) morphologies in this system for three different disorder types: Gaussian, uniform and bimodal. We obtain the critical properties of this system and find that they are independent of the disorder type. We also study GS morphologies via pinned-cluster distributions, which are scale-free at criticality. The spin-spin correlation functions (and structure factors) are characterized by a roughness exponent \( \alpha \simeq 0.5\). The corresponding scaling function is universal for all disorder types and independent of h.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    T. Nattermann, J. Villain, Phase Trans. 11, 5 (1988)CrossRefGoogle Scholar
  2. 2.
    T. Nattermann, in Spin Glasses and Random Fields, edited by A.P. Young (World Scientific, Singapore, 1998)Google Scholar
  3. 3.
    J.Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    J.Z. Imbrie, Commun. Math. Phys. 98, 145 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    J. Bricmont, A. Kupiainen, Phys. Rev. Lett. 59, 1829 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    S. Fishman, A. Aharony, J. Phys. C 12, L729 (1979)ADSCrossRefGoogle Scholar
  7. 7.
    D.P. Belanger, A.R. King, V. Jaccarino, Phys. Rev. Lett. 48, 1050 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    R.L.C. Vink, K. Binder, H. Löwen, Phys. Rev. Lett. 97, 230603 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    B. Tadic, Eur. Phys. J. B 28, 81 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    J.P. Sethna, K.A. Dahmen, C.R. Myers, Nature 410, 242 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Y.G. Pollack, M. Schechter, Phys. Rev. B 89, 064414 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    G.P. Shrivastav, S. Krishnamoorthy, V. Banerjee, S. Puri, EPL 96, 36003 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    G.P. Shrivastav, M. Kumar, V. Banerjee, S. Puri, Phys. Rev. E 90, 032140 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    G.P. Shrivastav, V. Banerjee, S. Puri, Eur. Phys. J. E 37, 98 (2014)CrossRefGoogle Scholar
  15. 15.
    V. Banerjee, S. Puri, G.P. Shrivastav, Ind. J. Phys. 88, 1005 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Bupathy, V. Banerjee, S. Puri, Phys. Rev. E 93, 012104 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Boykov, V. Kolmogorov, IEEE Trans. PAMI 26, 1124 (2004)CrossRefGoogle Scholar
  18. 18.
    J.P. Sethna, K. Dahmen, S. Kartha, J.A. Krumhansl, B.W. Roberts, D. Shore, Phys. Rev. Lett. 70, 3347 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    O. Perković, K.A. Dahmen, J.P. Sethna, Phys. Rev. B 59, 6106 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Sethna, K.A. Dahmen, O. Perković, arXiv preprint: cond-mat/0406320Google Scholar
  21. 21.
    K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction, 4th edition (Springer-Verlag, Berlin, 2002)Google Scholar
  22. 22.
    M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, Oxford, 1999)Google Scholar
  23. 23.
    L. Ford, D. Fulkerson, Flows in Networks (Princeton University Press, Princeton, 1962)Google Scholar
  24. 24.
    A.V. Goldberg, R.E. Tarjan, J. ACM 32, 921 (1988)CrossRefGoogle Scholar
  25. 25.
    V. Kolmogorov, R. Zabih, IEEE Trans. PAMI 26, 147 (2004)CrossRefGoogle Scholar
  26. 26.
    Y. Boykov, O. Veksler, R. Zabih, IEEE Trans. PAMI 23, 1222 (2001)CrossRefGoogle Scholar
  27. 27.
    N.G. Fytas, V. Martìn-Mayor, Phys. Rev. Lett. 110, 227201 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    S. Puri, V.K. Wadhawan (Editors), Kinetics of Phase Transitions (Taylor and Francis, Boca Raton, 2009)Google Scholar
  29. 29.
    G. Porod, in Small-Angle X-Ray Scattering, edited by O. Glatter, O. Kratky (Academic Press, New York, 1982)Google Scholar
  30. 30.
    Y. Oono, S. Puri, Mod. Phys. Lett. B 2, 861 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    P.-Z. Wong, Phys. Rev. B 32, 7417 (1985)ADSCrossRefGoogle Scholar
  32. 32.
    P.-Z. Wong, A.J. Bray, Phys. Rev. B 37, 7751 (1988)ADSCrossRefGoogle Scholar
  33. 33.
    W. Kleemann, J. Dec, P. Lehnen, R. Blinc, B. Zalar, R. Pankrath, Europhys. Lett. 57, 14 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    B.J. Rodriguez, S. Jesse, A.P. Baddorf, S.-H. Kim, S.V. Kalinin, Phys. Rev. Lett. 98, 247603 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    A.K. Hartmann, U. Nowak, Eur. Phys. J. B 7, 105 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    M.R. Swift, A.J. Bray, A. Maritan, M. Cieplak, J.R. Banavar, Europhys. Lett. 38, 273 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    D. Huse, C.L. Henley, Phys. Rev. Lett. 54, 2708 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    T. Nattermann, I. Vilfan, Phys. Rev. Lett. 61, 223 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    S. Puri, Phase Trans. 77, 469 (2004)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Department of PhysicsIndian Institute of TechnologyHauz Khas, New DelhiIndia

Personalised recommendations