Skip to main content
Log in

Effect of including a gas layer on the gel formation process during the drying of a polymer solution

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this paper, we study the influence of the upper gas layer on the drying and gelation of a polymer solution. The gel is formed due to the evaporation of the binary solution into (inert) air. A one-dimensional model is proposed, where the evaporation flux is more realistically described than in previous studies. The approach is based on general thermodynamic principles. A composition-dependent diffusion coefficient is used in the liquid phase and the local equilibrium hypothesis is introduced at the interface to describe the evaporation process. The results show that the high thickness of the gas layer reduces evaporation, thus leading to longer drying times. Our model is also compared with more phenomenological descriptions of evaporation, for which the mass flux through the interface is described by the introduction of a Peclet number. A global agreement is found for appropriate values of the Peclet numbers and our model can thus be considered as a tool allowing to link the value of the empirical Peclet number to the physics of the gas phase. Finally, in contrast with other models, our approach emphasizes the possibility of very fast gelation at the interface, which could prevent all Marangoni convection during the drying process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.L. Evans, L.W. Schwartz, R.V. Roy, J. Colloid Interface Sci. 227, 191 (2000)

    Article  ADS  Google Scholar 

  2. S.D. Howison, J.A. Moriarty, J.R. Ockendon, E.L. Terrill, S.K. Wilson, J. Eng. Math. 32, 377 (1997)

    Article  Google Scholar 

  3. P. Mokarian-Tabari, M. Geoghegan, J.R. Howse, S.Y. Heriot, R.L. Thompson, R.A.L. Jones, Eur. Phys. J. E 33, 283 (2010)

    Article  Google Scholar 

  4. S. Walheim, E. Schäffer, J. Mlynek, U. Steiner, Science 283, 520 (1999)

    Article  ADS  Google Scholar 

  5. A. Munch, C.P. Please, B. Wagner, Phys. Fluids 23, 102101 (2011)

    Article  ADS  Google Scholar 

  6. B. Guerrier, C. Bouchard, C. Allah, C. Benard, AIChE J. 44, 791 (1998)

    Article  Google Scholar 

  7. B.J. de Gans, U.S. Schubert, Langmuir 20, 7789 (2004)

    Article  Google Scholar 

  8. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R.H. Friend, Thin Solid Films 438-439, 279 (2003)

    Article  ADS  Google Scholar 

  9. B.J. de Gans, P.C. Duineveld, U.S. Schubert, Adv. Mater. 16, 203 (2004)

    Article  Google Scholar 

  10. B. Li, Y.P. Cao, X.Q. Feng, H. Gao, Soft Matter 8, 5728 (2012)

    Article  ADS  Google Scholar 

  11. A.F. Routh, Rep. Prog. Phys. 76, 046603 (2013)

    Article  ADS  Google Scholar 

  12. D.E. Bornside, C.W. Macosko, L.E. Scriven, J. Appl. Phys. 66, 5185 (1989)

    Article  ADS  Google Scholar 

  13. P.G. de Gennes, Eur. Phys. J. E 7, 31 (2002)

    Article  Google Scholar 

  14. M. Tsige, G.S. Grest, Macromolecules 37, 4333 (2004)

    Article  ADS  Google Scholar 

  15. Y. Reyes, Y. Duda, Langmuir 21, 7057 (2005)

    Article  Google Scholar 

  16. A.F. Routh, W.B. Zimmerman, Chem. Eng. Sci. 59, 2961 (2004)

    Article  Google Scholar 

  17. A.M. Konig, T.G. Weerakkody, J.L. Keddie, D. Johannsmann, Langmuir 24, 7580 (2008)

    Article  Google Scholar 

  18. A. Sarkar, M.S. Tirumkudulu, Langmuir 25, 4945 (2009)

    Article  Google Scholar 

  19. F. Buss, C.C. Roberts, K.S. Crawford, K. Peters, L.F. Francis, J. Colloid Interface Sci. 359, 112 (2011)

    Article  ADS  Google Scholar 

  20. K.Y. Ozawa, T. Okuzono, M. Doi, Jpn. J. Appl. Phys. 45, 8817 (2006)

    Article  ADS  Google Scholar 

  21. M.G. Hennessy, C.J.W. Breward, C.P. Please, SIAM J. Appl. Math. 76, 1711 (2016)

    Article  MathSciNet  Google Scholar 

  22. M.G. Hennessy, G.L. Ferretti, J.T. Cabral, O.K. Matar, J. Colloid Interface Sci. 488, 61 (2017)

    Article  ADS  Google Scholar 

  23. H. Machrafi, A. Rednikov, P. Colinet, P.C. Dauby, Eur. Phys. J. ST 192, 71 (2011)

    Article  Google Scholar 

  24. T. Okuzono, M. Doi, Phys. Rev. E 77, 1 (2008)

    Article  Google Scholar 

  25. H. Machrafi, A. Rednikov, P. Colinet, P.C. Dauby, Phys. Rev. E 91, 053018 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, 1999)

  27. A.E. Nesterov, Y.S. Lipatov, Thermodynamics of Polymer Blends (CRC Press, 1998)

  28. P. Atkins, Physical Chemistry (Oxford University Press, Oxford, 2001) Chapt. “Simple Mixtures”

  29. H. Machrafi, A. Rednikov, P. Colinet, P.C. Dauby, Phys. Fluids 25, 084106 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Rabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabani, R., Machrafi, H. & Dauby, P. Effect of including a gas layer on the gel formation process during the drying of a polymer solution. Eur. Phys. J. E 40, 89 (2017). https://doi.org/10.1140/epje/i2017-11579-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11579-3

Keywords

Navigation