Buckling of elastic filaments by discrete magnetic moments

Regular Article

Abstract.

We study the buckling of an idealized, semiflexible filament along whose contour magnetic moments are placed. We give analytic expressions for the critical stiffness of the filament below which it buckles due to the magnetic compression. For this, we consider various scenarios of the attachment of the magnetic particles to the filament. One possible application for this model are the magnetosome chains of magnetotactic bacteria. An estimate of the critical bending stiffness indicates that buckling may occur within the range of biologically relevant parameters and suggests a role for the bending stiffness of the filament to stabilize the filament against buckling, which would compromise the functional relevance of the bending stiffness of the used filament.

Graphical abstract

Keywords

Living systems: Biomimetic Systems 

References

  1. 1.
    Z. Tang, N.A. Kotov, Adv. Mater. 17, 951 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Majetich, T. Wen, R. Booth, ACS Nano 5, 6081 (2011)CrossRefGoogle Scholar
  3. 3.
    H. Wang, Y. Yu, Y. Sun, Q. Chen, Nano 6, 1 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Král, R. Klajn, Science 345, 1149 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    S. Kralj, D. Makovec, ACS Nano 9, 9700 (2015)CrossRefGoogle Scholar
  6. 6.
    X. Jiang, J. Feng, L. Huang, Y. Wu, B. Su, W. Yang, L. Mai, L. Jiang, Adv. Mater. 28, 6952 (2016)CrossRefGoogle Scholar
  7. 7.
    D. Vella, E. du Pontavice, C.L. Hall, A. Goriely, Proc. R. Soc. A: Math. Phys. Eng. Sci. 470, 20130609 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    B. Kiani, D. Faivre, S. Klumpp, New J. Phys. 17, 043007 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    J.L. Barrat, J.F. Joanny, EPL 24, 333 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    S. Klumpp, D. Faivre, Eur. Phys. J. ST 225, 2173 (2016)CrossRefGoogle Scholar
  11. 11.
    D.A. Bazylinski, R.B. Frankel, Nat. Rev. Microbiol. 2, 217 (2004)CrossRefGoogle Scholar
  12. 12.
    L. Yan, S. Zhang, P. Chen, H. Liu, H. Yin, H. Li, Microbiol. Res. 167, 507 (2012)CrossRefGoogle Scholar
  13. 13.
    C.T. Lefèvre, M. Bennet, L. Landau, P. Vach, D. Pignol, D.A. Bazylinski, R.B. Frankel, S. Klumpp, D. Faivre, Biophys. J. 107, 527 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    R.B. Frankel, D.A. Bazylinski, Trends Microbiol. 14, 329 (2006)CrossRefGoogle Scholar
  15. 15.
    A. Komeili, Z. Li, D.K. Newman, G.J. Jensen, Science 311, 242 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    A. Scheffel, M. Gruska, D. Faivre, A. Linaroudis, J.M. Plitzko, D. Schüler, Nature 440, 110 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    D. Faivre, A. Fischer, I. Garcia-Rubio, G. Mastrogiacomo, A.U. Gehring, Biophys. J. 99, 1268 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    D. Murat, J. Mol. Microbiol. Biotechnol. 23, 81 (2013)CrossRefGoogle Scholar
  19. 19.
    O. Draper, M.E. Byrne, Z. Li, S. Keyhani, J.C. Barrozo, G. Jensen, A. Komeili, Mol. Microbiol. 82, 342 (2011)CrossRefGoogle Scholar
  20. 20.
    V.P. Shcherbakov, M. Winklhofer, M. Hanzlik, N. Petersen, Eur. Biophys. J. 26, 319 (1997)CrossRefGoogle Scholar
  21. 21.
    U. Lins, M. Farina, Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 85, 335 (2004)Google Scholar
  22. 22.
    A. Cebers, Curr. Opin. Colloid Interface Sci. 10, 167 (2005)CrossRefGoogle Scholar
  23. 23.
    L.G. Abraçado, F. Abreu, C.N. Keim, A.P.C. Campos, U. Lins, M. Farina, Phys. Biol. 7, 046016 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    C.L. Hall, D. Vella, A. Goriely, SIAM J. Appl. Math. 73, 2029 (2013) arXiv:1310.3436MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Körnig, J. Dong, M. Bennet, M. Widdrat, J. Andert, F.D. Müller, D. Schüler, S. Klumpp, D. Faivre, Nano Lett. 14, 4653 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    A.G. Meyra, G.J. Zarragoicoechea, V.A. Kuz, Phys. Chem. Chem. Phys. 18, 12768 (2016)CrossRefGoogle Scholar
  27. 27.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity, Course of Theoretical Physics, Vol. 7, second edition (Pergamon Press, 1981) ISBN: 0080064655Google Scholar
  28. 28.
    G. Kirchhoff, Vorlesungen über Mechanik, Vol. 1 (BG Teubner, Leipzig, 1897) https://archive.org/details/ vorlesungenberm04kircgoog
  29. 29.
    M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Vol. 2 (Prentice-Hall, Englewood Cliffs, 1976)Google Scholar
  30. 30.
    J. Kierfeld, K. Baczynski, P. Gutjahr, T. Kühne, R. Lipowsky, Soft Matter 6, 5764 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    M.A. Annunziata, A.M. Menzel, H. Löwen, J. Chem. Phys. 138, 204906 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    J.J. Cerdà, P.A. Sánchez, C. Holm, T. Sintes, Soft Matter 9, 7185 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    P.A. Sánchez, J.J. Cerdà, T. Sintes, C. Holm, J. Chem. Phys. 139, 044904 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    S. Huang, G. Pessot, P. Cremer, R. Weeber, C. Holm, J. Nowak, S. Odenbach, A.M. Menzel, G.K. Auernhammer, Soft Matter 12, 228 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    D.A. Singer, O.J. Garay, E. Garcia-Rio, R. Vazquez-Lorenzo, Lectures on Elastic Curves and Rods, in AIP Conference Proceedings, Vol. 1002 (AIP, 2008) pp. 3--32, ISSN: 0094243XGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute for Nonlinear DynamicsUniversity of GöttingenGöttingenGermany

Personalised recommendations