Drag of a Cottrell atmosphere by an edge dislocation in a smectic-A liquid crystal

Regular Article

Abstract.

In a recent letter (P. Oswald et al., EPL 103, 46004 (2013)), we have shown that a smectic-A phase hardens in compression normal to the layers when the liquid crystal is doped with gold nanoparticles. This is due to the formation of Cottrell clouds nearby the core of the edge dislocations and the appearance of an additional drag force that reduces their mobility. We theoretically calculate the shape of the Cottrell cloud and the associated drag force as a function of the climb velocity of the dislocations. The main result is that the drag force depends on velocity and vanishes when the temperature tends to the smectic-A-to-nematic transition temperature. The role of the diffusion anisotropy is also evaluated.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    A.H. Cottrell, in Report on the Strength of Solids (Physical Society, London, 1948) p. 30Google Scholar
  2. 2.
    A.H. Cottrell, M.A. Jaswon, Proc. R. Soc. A 199, 104 (1949)ADSCrossRefGoogle Scholar
  3. 3.
    A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. A 62, 49 (1949)ADSCrossRefGoogle Scholar
  4. 4.
    A.H. Cottrell, Dislocations and Plastic Flow in Crystals (Clarendon Press, Oxford, 1953)Google Scholar
  5. 5.
    J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edition (Krieger Publishing Company, Malabar, Fla, 1992)Google Scholar
  6. 6.
    P. Oswald, J. Milette, S. Relaix, L. Reven, A. Dequidt, L. Lejcek, EPL 103, 46004 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    J. Milette, V. Toader, L. Reven, R.B. Lennox, J. Mater. Chem. 21, 9043 (2011)CrossRefGoogle Scholar
  8. 8.
    L. Lejček, Liq. Cryst. 1, 473 (1986)CrossRefGoogle Scholar
  9. 9.
    S. Takeuchi, A.S. Argon, Philos. Mag. A 40, 65 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    P. Oswald, P. Pieranski, Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, CRC Press, Boca Raton, 2006)Google Scholar
  11. 11.
    R. Ribotta, G. Durand, J. Phys. (Paris) 38, 179 (1977)CrossRefGoogle Scholar
  12. 12.
    N.A. Clark, A.J. Hurd, J. Phys. (Paris) 43, 1159 (1982)CrossRefGoogle Scholar
  13. 13.
    P.G. de Gennes, Phys. Fluids 17, 1645 (1974)ADSCrossRefGoogle Scholar
  14. 14.
    F. Schneider, Phys. Rev. E 74, 021709 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    R. Bartolino, G. Durand, Nuovo Cimento D 3, 903 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    M. Allain, Europhys. Lett. 2, 597 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    I. Lelidis, C. Blanc, M. Kléman, Phys. Rev. E 74, 051710 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    L. Bourdon, M. Kléman, L. Lejček, D. Taupin, J. Phys. (Paris) 42, 261 (1981)CrossRefGoogle Scholar
  19. 19.
    P. Oswald, M. Kléman, J. Phys. (Paris) Lett. 45, L319 (1984)CrossRefGoogle Scholar
  20. 20.
    R.A. Herke, N.A. Clark, M.A. Handschy, Phys. Rev. E 56, 3028 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    P. Oswald, C.R. Acad. Sci. Paris (Série II) 296, 1385 (1983)Google Scholar
  22. 22.
    Y. Galerne, Etude interférométrique de la transition smectique A-smectique C, D.Sc. Thesis, University of Paris XI, Orsay, 1982Google Scholar
  23. 23.
    L. Bourdon, Contribution à l'étude des défauts dans les phases smectiques à couches liquides, M.Sc. Thesis, University of Paris XI, Orsay, 1980Google Scholar
  24. 24.
    P.G. de Gennes, Solid State. Commun. 10, 753 (1972)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de PhysiqueLyonFrance
  2. 2.Institute of PhysicsCzech Academy of SciencesPrague 8Czech Republic

Personalised recommendations