Anomalous force-velocity relation of driven inertial tracers in steady laminar flows

Regular Article
Part of the following topical collections:
  1. Fluids and Structures: Multi-scale coupling and modeling

Abstract.

We study the nonlinear response to an external force of an inertial tracer advected by a two-dimensional incompressible laminar flow and subject to thermal noise. In addition to the driving external field F, the main parameters in the system are the noise amplitude \(D_{0}\) and the characteristic Stokes time \(\tau\) of the tracer. The relation velocity vs. force shows interesting effects, such as negative differential mobility (NDM), namely a non-monotonic behavior of the tracer velocity as a function of the applied force, and absolute negative mobility (ANM), i.e. a net motion against the bias. By extensive numerical simulations, we investigate the phase chart in the parameter space of the model, \((\tau , D_{0})\), identifying the regions where NDM, ANM and more common monotonic behaviors of the force-velocity curve are observed.

Graphical abstract

Keywords

Topical contribution 

References

  1. 1.
    J.H. Seinfeld, N.S. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (John Wiley & Sons, 2016)Google Scholar
  2. 2.
    V. Hessel, H. Löwe, F. Schönfeld, Chem. Eng. Sci. 60, 2479 (2004)CrossRefGoogle Scholar
  3. 3.
    W.M. Durham, E. Climent, M. Barry, F. De Lillo, G. Boffetta, M. Cencini, R. Stocker, Nat. Commun. 4, 2148 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    K. Gustavsson, B. Mehlig, Adv. Phys. 65, 1 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    G. Falkovich, A. Fouxon, M.G. Stepanov, Nature 419, 151 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    F. De Lillo, F. Cecconi, G. Lacorata, A. Vulpiani, EPL 84, 40005 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A. Bracco, P.H. Chavanis, A. Provenzale, E.A. Spiegel, Phys. Fluids 11, 2280 (1999)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    F. Corberi, E. Lippiello, M. Zannetti, J. Stat. Mech. 2007, P07002 (2007)CrossRefGoogle Scholar
  9. 9.
    U. Marini Bettolo Marconi, A. Puglisi, L. Rondoni, A. Vulpiani, Phys. Rep. 461, 111 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    E. Lippiello, F. Corberi, A. Sarracino, M. Zannetti, Phys. Rev. B 77, 212201 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    E. Lippiello, F. Corberi, A. Sarracino, M. Zannetti, Phys. Rev. E 78, 041120 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M. Baiesi, C. Maes, New J. Phys. 15, 013004 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    R.K.P. Zia, E.L. Praestgaard, O.G. Mouritsen, Am. J. Phys. 70, 384 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    S. Leitmann, T. Franosch, Phys. Rev. Lett. 111, 190603 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    U. Basu, C. Maes, J. Phys. A: Math. Theor. 47, 255003 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    O. Bénichou, P. Illien, G. Oshanin, A. Sarracino, R. Voituriez, Phys. Rev. Lett. 113, 268002 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    M. Baiesi, A.L. Stella, C. Vanderzande, Phys. Rev. E 92, 042121 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    O. Bénichou, P. Illien, G. Oshanin, A. Sarracino, R. Voituriez, Phys. Rev. E 93, 032128 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    A. Ros, R. Eichhorn, J. Regtmeier, T.T. Duong, P. Reimann, D. Anselmetti, Nature 436, 928 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    M. Kostur, L. Machura, P. Hänggi, J. Luczka, P. Talkner, Physica A 371, 20 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    L. Machura, M. Kostur, P. Talkner, J. Luczka, P. Hänggi, Phys. Rev. Lett. 98, 040601 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    R. Eichhorn, J. Regtmeier, D. Anselmetti, P. Reimann, Soft Matter 6, 1858 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    M.R. Maxey, Phys. Fluid. 39, 1915 (1987)ADSCrossRefGoogle Scholar
  25. 25.
    J. Rubin, C.K.R.T. Jones, M. Maxey, J. Nonlinear Sci. 5, 337 (1995)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    J.C.H. Fung, J. Aerosol Sci. 28, 753 (1997)CrossRefGoogle Scholar
  27. 27.
    J.-R. Angilella, Phys. Fluids 19, 073302 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    J. Bec, L. Biferale, M. Cencini, A. Lanotte, S. Musacchio, F. Toschi, Phys. Rev. Lett. 98, 084502 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    E. Calzavarini, M. Cencini, D. Lohse, F. Toschi, Phys. Rev. Lett. 101, 084504 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    A. Sarracino, F. Cecconi, A. Puglisi, A. Vulpiani, Phys. Rev. Lett. 117, 174501 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    R.L. Honeycutt, Phys. Rev. A 45, 600 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    N. Fenichel, J. Differ. Equ. 31, 5198 (1979)MathSciNetCrossRefGoogle Scholar
  33. 33.
    T.J. Burns, R.W. Davies, E.F. Moore, J. Fluid Mech. 384, 1 (1999)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    D. Speer, R. Eichhorn, P. Reimann, Phys. Rev. E 76, 051110 (2007)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    D. Speer, R. Eichhorn, P. Reimann, EPL 79, 10005 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    S. Colabrese, K. Gustavsson, A. Celani, L. Biferale, Phys. Rev. Lett. 118, 158004 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • F. Cecconi
    • 1
  • A. Puglisi
    • 1
  • A. Sarracino
    • 1
  • A. Vulpiani
    • 2
    • 3
  1. 1.CNR-ISC and Dipartimento di FisicaSapienza Università di RomaRomaItaly
  2. 2.Dipartimento di FisicaSapienza Università di Roma, and CNR-ISCRomaItaly
  3. 3.Accademia dei LinceiCentro Interdisciplinare B. SegreRomaItaly

Personalised recommendations