Advertisement

Theory of liquid crystal elastomers and polymer networks

Connection between neoclassical theory and differential geometry
  • Thanh-Son Nguyen
  • Jonathan V. Selinger
Regular Article

Abstract.

In liquid crystal elastomers and polymer networks, the orientational order of liquid crystals is coupled with elastic distortions of crosslinked polymers. Previous theoretical research has described these materials through two different approaches: a neoclassical theory based on the liquid crystal director and the deformation gradient tensor, and a geometric elasticity theory based on the difference between the actual metric tensor and a reference metric. Here, we connect those two approaches using a formalism based on differential geometry. Through this connection, we determine how both the director and the geometry respond to a change of temperature.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    M. Warner, E.M. Terentjev, Liquid Crystal Elastomers (Oxford University Press, 2003)Google Scholar
  2. 2.
    T.J. White, D.J. Broer, Nat. Mater. 14, 1087 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    S. Conti, A. DeSimone, G. Dolzmann, J. Mech. Phys. Solids 50, 1431 (2002)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Conti, A. DeSimone, G. Dolzmann, Phys. Rev. E 66, 061710 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    C.D. Modes, K. Bhattacharya, M. Warner, Phys. Rev. E 81, 060701 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    C.D. Modes, K. Bhattacharya, M. Warner, Proc. R. Soc. A 467, 1121 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    C.D. Modes, M. Warner, Phys. Rev. E 84, 021711 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    C.D. Modes, M. Warner, EPL 97, 36007 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    F. Cirak, Q. Long, K. Bhattacharya, M. Warner, Int. J. Solids Struct. 51, 144 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Aharoni, E. Sharon, R. Kupferman, Phys. Rev. Lett. 113, 257801 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    L.M. Pismen, Phys. Rev. E 90, 060501 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    C. Mostajeran, Phys. Rev. E 91, 062405 (2015)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    C.D. Modes, M. Warner, Phys. Rev. E 92, 010401 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    C. Modes, M. Warner, Phys. Today 69, 32 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    C. Mostajeran, M. Warner, T.H. Ware, T.J. White, Proc. R. Soc. A 472, 2189 (2016)CrossRefGoogle Scholar
  16. 16.
    P. Plucinsky, M. Lemm, K. Bhattacharya, Phys. Rev. E 94, 010701 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Klein, E. Efrati, E. Sharon, Science 315, 1116 (2007)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    R.D. Kamien, Science 315, 1083 (2007)CrossRefGoogle Scholar
  19. 19.
    E. Efrati, E. Sharon, R. Kupferman, J. Mech. Phys. Solids 57, 762 (2009)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    E. Sharon, E. Efrati, Soft Matter 6, 5693 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    M.A. Dias, J.A. Hanna, C.D. Santangelo, Phys. Rev. E 84, 036603 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    G.C. Verwey, M. Warner, Macromolecules 30, 4189 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    G.C. Verwey, M. Warner, Macromolecules 30, 4196 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    J.S. Biggins, E.M. Terentjev, M. Warner, Phys. Rev. E 78, 041704 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    T.-S. Nguyen. Statistical Physics of Orientational Order and Curvature, PhD Dissertation, Kent State University (2015) Chapt. 4Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Liquid Crystal InstituteKent State UniversityKentUSA

Personalised recommendations