Skip to main content
Log in

Investigating the origin of acoustic attenuation in liquid foams

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Liquid foams are known to be highly efficient to absorb acoustic waves but the origin of the sound dissipation remains unknown. In this paper, we present low frequency (0.5-4kHz) experimental results measured with an impedance tube and we confront the recorded attenuations with a simple model that considers the foam as a concentrate bubbly liquid. In order to identify the influence of the different parameters constituting the foams we probe samples with different gases, and various liquid fractions and bubble size distributions. We demonstrate that the intrinsic acoustic attenuation in the liquid foam is due to both thermal and viscous losses. The physical mechanism of the viscous term is not elucidated but the microscopic effective viscosity evidenced here can be described by a phenomenological law scaling with the bubble size and the gas density. In our experimental configuration a third dissipation term occurs. It comes from the viscous friction on the wall of the impedance tube and it is well described by the Kirchhoff law considering the macroscopic effective viscosity classically measured in rheology experiments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Juliette Pierre, Benjamin Dollet, Valentin Leroy, Phys. Rev. Lett. 112, 148307 (2014)

    Article  ADS  Google Scholar 

  2. Albert Beaumont Wood, A Text Book of Sound (G. Bell and Sons, London, 1941).

  3. K.B. Kann, Colloids Surf. A: Physicochem. Eng. Asp. 263, 315 (2005)

    Article  Google Scholar 

  4. Richard Raspet, S.K. Griffiths, J. Acoust. Soc. Am. 74, 1757 (1983)

    Article  ADS  Google Scholar 

  5. Nicolá, Phys. Rev. E 66, 021404 (2002)

    Article  Google Scholar 

  6. Martin Monloubou, Arnaud Saint-Jalmes, Benjamin Dollet, Isabelle Cantat, EPL 112, 34001 (2015)

    Article  ADS  Google Scholar 

  7. I. Goldfarb, Z. Orenbakh, I. Shreiber, F. Vafina, Shock Waves 7, 77 (1997)

    Article  ADS  Google Scholar 

  8. Juliette Pierre, Reine-Marie Guillermic, Florence Elias, Valentin Leroy, Eur. Phys. J. E 36, 113 (2013)

    Article  Google Scholar 

  9. I.I. Goldfarb, Z.M. Orenbakh, G.A. Shushkov, I.R. Shreiber, F.I. Vafina, J. Phys. IV 2, C1-891 (1992)

    Google Scholar 

  10. T. Gaillard, M. Roché, C. Honorez, M. Jumeau, A. Balan, C. Jedrzejczyk, W. Drenckhan, Controlled foam generation using cyclic diphasic flows through a constriction, to be published in Int. J. Multiphase Flow (2017)

  11. Thibaut Gaillard, Clé, Colloids Surf. A: Physicochem. Eng. Asp. 473, 68 (2015)

    Article  Google Scholar 

  12. I.I. Goldfarb, I.R. Schreiber, F.I. Vafina, J. Acoust. Soc. Am. 92, 2756 (1992)

    Article  ADS  Google Scholar 

  13. Imen Ben Salem, Reine-Marie Guillermic, Caitlin Sample, Valentin Leroy, Arnaud Saint-Jalmes, Benjamin Dollet, Soft Matter 9, 1194 (2013)

    Article  ADS  Google Scholar 

  14. Andrea Prosperetti, J. Acoust. Soc. Am. 56, 878 (1974)

    Article  Google Scholar 

  15. Isabelle Cantat, Sylvie Cohen-Addad, Florence Elias, François Graner, Reinhard Höhler, Olivier Pitois, Florence Rouyer, Arnaud Saint-Jalmes, Foams: Structure and Dynamics (Oxford University Press, 2013)

  16. Sé, Soft Matter 9, 1100 (2013)

    Article  ADS  Google Scholar 

  17. Gustav Kirchhoff, Ann. Phys. 210, 177 (1868)

    Article  Google Scholar 

  18. D.E. Weston, Proc. Phys. Soc. B 66, 695 (1953)

    Article  ADS  Google Scholar 

  19. Marion Erpelding, Reine-Marie Guillermic, Benjamin Dollet, Arnaud Saint-Jalmes, Jé, Phys. Rev. E 82, 021409 (2010)

    Article  ADS  Google Scholar 

  20. Fré, Phys. Rev. E 89, 012308 (2014)

    ADS  Google Scholar 

  21. Alexander L. Lindsay, LeRoy A. Bromley, Ind. Eng. Chem. 42, 1508 (1950)

    Article  Google Scholar 

  22. H.M. Princen, J. Colloid Interface Sci. 105, 150 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Leroy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierre, J., Gaulon, C., Derec, C. et al. Investigating the origin of acoustic attenuation in liquid foams. Eur. Phys. J. E 40, 73 (2017). https://doi.org/10.1140/epje/i2017-11562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11562-0

Keywords

Navigation