Electrical properties of polyetherimide thin films: Non-parametric dielectric response analysis with distribution of relaxation times

Regular Article

Abstract.

High temperature polymeric materials for electrical insulation and energy storage are needed for transformational power applications such as pulsed-power and hybrid electrical vehicles. One of the candidate materials has been polyetherimide, an amorphous thermoplastic with a glass transition over 200 °C. Here, the dielectric studies on the material are reported by taking into account the polarization and conduction processes in the polyetherimide. The dielectric data were analyzed with the distribution of relaxation times approach with Debye expression as the kernel in the inversion algorithm, the results then created the relaxation map for polyetherimide. The method satisfies the Kramers-Kronig relationships, so the ohmic conductivity and permittivity at high frequencies could be estimated from the experimental data even if there exists significant measurement error. The data were compared to the published results on polyetherimide in the literature. The materials is a low loss polymer with negligible ohmic losses below 200 °C. The estimated fragility of the polyetherimide was high about 284 from the resolved relaxation map using the Vogel-Fulcher-Tammann-Hesse expression. Polyetherimide is a good dielectric for advanced energy storage and electrical insulation technologies up to 200 °C.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    J.G. Wirth, D.R. Heath, Process for making polyetherimides, Technical Report USPO, 3,787,364 (1974)Google Scholar
  2. 2.
    J.G. Wirth, D.R. Heath, Process for making polyetherimides, Technical Report USPO, 3,838,097 (1974)Google Scholar
  3. 3.
    W.T. Shugg, Handbook of Electrical and Electronic Insulating Materials (Van Norstrand Reinhold Company Inc., New York, 1986)Google Scholar
  4. 4.
    J. Belana, J.C. Caadas, J.A. Diego, M. Mudarra, R. Daz-Calleja, S. Friederichs, C. James, M.J. Sanchis, Polym. Int. 46, 11 (1998)CrossRefGoogle Scholar
  5. 5.
    R. Diaz-Calleja, S. Friederichs, C. Jaimes, M.J. Sanchis, J. Belana, J.C. Canadas, J.A. Diego, M. Mudarra, Polym. Int. 46, 20 (1998)CrossRefGoogle Scholar
  6. 6.
    E. Krause, G.M. Yang, G.M. Sessler, Polym. Int. 46, 59 (1998)CrossRefGoogle Scholar
  7. 7.
    W.J. Sarjeant, J. Zirnheld, F.W. MacDougall, IEEE Trans. Plasma Sci. 26, 1368 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    C.W. Reed, S.W. Cichanowski, IEEE Trans. Dielectr. Electr. Insul. 1, 904 (1994)CrossRefGoogle Scholar
  9. 9.
    S.J. Rzad, S.M. Gasworth, C.W. Reed, M.W. DeVre, Advanced materials for high energy density capacitors, in IEEE 35th International, Power Sources Symposium, 1992 (IEEE, 1992) pp. 358--362Google Scholar
  10. 10.
    J.J. Fontanella, J.T. Bendler, D.E. Schuele, C.A. Edmondson, J.F. Lomax, J. Non-Cryst. Solids 353, 4528 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    E. Donth, The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials, Springer Series in Materials Science, Vol. 48 (Springer-Verlag, Berlin, 2001)Google Scholar
  12. 12.
    P. Lunkenheimer, A. Loidl, Glass dynamics beyond the $\alpha$-relaxation, in Broadband Dielectric Spectroscopy, edited by F. Kremer, A. Schönhals (Springer-Verlag, Berlin, 2003) Chapt. 5, pp. 131--169Google Scholar
  13. 13.
    F. Kremer, A. Schönhals (Editors), Broadband Dielectric Spectroscopy (Springer-Verlag, Berlin, 2003)Google Scholar
  14. 14.
    E. Barsoukov, J.R. Macdonald (Editors), Impedance Spectroscopy: Theory, Experiment and Applications, 2nd edition (John Wiley & Sons, New York, 2005)Google Scholar
  15. 15.
    G. Blaise, C. Le Gressus, Charging phenomena, dielectric relaxation processes and breakdown of oxides, in 1990 Annual Report: Conference on Electrical Insulation and Dielectric Phenomena (IEEE, 1990) pp. 231--236Google Scholar
  16. 16.
    Niels Jonassen, Electrostatics, The Kluwer International Series in Engineering and Computer Science (Kluwer Academic Publishers, Norwell, Mass., USA, 2002)Google Scholar
  17. 17.
    H. Fröhlich. Theory of DielectricsGoogle Scholar
  18. 18.
    W.A. Yager, Physics 7, 434 (1936)ADSCrossRefGoogle Scholar
  19. 19.
    W. Kauzmann, Rev. Mod. Phys. 14, 12 (1942)ADSCrossRefGoogle Scholar
  20. 20.
    J.R. Macdonald, C.A. Barlow, Rev. Mod. Phys. 35, 940 (1963)ADSCrossRefGoogle Scholar
  21. 21.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric, London, 1983)Google Scholar
  22. 22.
    N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids, Dover edition (John Wiley & Sons Ltd., London, 1967)Google Scholar
  23. 23.
    H. Kliem, P. Fuhrmann, G. Arlt, IEEE Trans. Electr. Insul. 23, 919 (1988)CrossRefGoogle Scholar
  24. 24.
    A. Bella, E. Laredo, M. Grimau, Phys. Rev. B 60, 12764 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    H. Keiter, M. Rosenberg, Eur. J. Phys. B 5, 599 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    C.J. Dias, Phys. Rev. B 53, 14212 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    S. Havriliak, S. Negami, J. Polym. Sci.: Part C 14, 99 (1966)Google Scholar
  28. 28.
    M. Arndt, R. Stannarius, W. Gorbatschow, F. Kremer, Phys. Rev. B 54, 5377 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    J.R. Macdonald, J. Comput. Phys. 157, 280 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    J.R. Macdonald, Inverse Probl. 16, 1561 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    J.R. Macdonald, J. Chem. Phys. 102, 6241 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    E. Tuncer, S.M. Gubański, IEEE Trans. Dielectr. Electr. Insul. 8, 310 (2001)CrossRefGoogle Scholar
  33. 33.
    E. Tuncer, J.R. Macdonald, J. Appl. Phys. 99, 074106 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    J.R. Macdonald, E. Tuncer, J. Elctroanal. Chem. 602, 255 (2007)CrossRefGoogle Scholar
  35. 35.
    E. Tuncer, J. Belattar, M.E. Achour, C. Brosseau, Broadband spectral analysis of non-Debye dielectric relaxation in percolating heterostructures, in Advances in Composite Materials for Medicine and Nanotechnology, edited by Brahim Attaf (InTech, 2011) pp. 1--12, DOI:10.5772/14680
  36. 36.
    E. Tuncer, I. Sauers, D.R. James, A.R. Ellis, M.P. Paranthaman, T. Aytuğ, S. Sathyamurthy, K.L. More, J. Li, A. Goyal, Nanotechnology 18, 025703 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    E. Tuncer, N. Bowler, I.J. Youngs, K.P. Lymer, Philos. Mag. 86, 2359 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    E. Tuncer, M. Wegener, R. Gerhard-Multhaupt, J. Non-Cryst. Solids 351, 2917 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    E. Tuncer, M. Wegener, P. Frübing, R. Gerhard-Multhaupt, J. Chem. Phys. 122, 084901 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    E. Tuncer, M. Furlani, B.-E. Mellander, J. Appl. Phys. 95, 3131 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    E. Tuncer, B. Nettelblad, S.M. Gubański, J. Appl. Phys. 92, 4612 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    E. Tuncer, S.M. Gubański, B. Nettelblad, J. Electrostat. 56, 449 (2001)CrossRefGoogle Scholar
  43. 43.
    E. Tuncer, Dielectric relaxation in dielectric mixtures, PhD Thesis (Chalmers University of Technology, Gothenburg, Sweden, 2001)Google Scholar
  44. 44.
    P. Debye, Polar Molecules (Dover Publications, New York, 1945)Google Scholar
  45. 45.
    J.R. Macdonald, Phys. Rev. 91, 412 (1953)ADSCrossRefGoogle Scholar
  46. 46.
    E. Tuncer, S.M. Gubański, Turk. J. Phys. 26, 1 (2002)Google Scholar
  47. 47.
    E. Tuncer, Phys. Rev. B 71, 012101 (2005) preprint arXiv:cond-mat/0403243 ADSCrossRefGoogle Scholar
  48. 48.
    Enis Tuncer, Sidney B. Lang, Appl. Phys. Lett. 86, 071107 (2005) preprint arXiv:cond-mat/0409183 ADSCrossRefGoogle Scholar
  49. 49.
    Sidney Lang, Enis Tuncer, J. Electroceram. 21, 827 (2008)CrossRefGoogle Scholar
  50. 50.
    E. Tuncer, IEEE Trans. Dielectr. Electr. Insul. 19, 1221 (2012)CrossRefGoogle Scholar
  51. 51.
    E. Tuncer, Inverse problems in dielectrics, in 14th International Symposium on Electrets (ISE), Aug. 2011 (IEEE, 2011) pp. 77, 78, DOI:10.1109/ISE.2011.6084990
  52. 52.
    J. Belana, J.C. Canadas, J.A. Diego, M. Mudarra, R. Diaz, S. Friederichs, C. Jaimes, M.J. Sanchis, Polym. Int. 46, 29 (1998)CrossRefGoogle Scholar
  53. 53.
    M. Mudarra, J. Belana, J.C. Cañadas, J.A. Diego, J. Sellarès, R. Díaz-Calleja, M.J. Sanchís, J. Appl. Phys. 88, 4807 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    M. Mudarra, J. Belana, R. Diaz-Calleja, J.C. Canadas, J.A. Diego, J. Sellares, M.J. Sanchis, Relaxation of space charge in polyetherimide by dynamic electrical analysis and thermally stimulated depolarization currents, in Proceedings of the 10th International Symposium on Electrets (ISE 10) (IEEE, 1999) pp. 71--74Google Scholar
  55. 55.
    Kwang S. Suh, Jin Ho Nam, Kee Joe Lim, J. Appl. Phys. 80, 6333 (1996)ADSCrossRefGoogle Scholar
  56. 56.
    J.L. Suthar, A. Stokes, W. Khachen, J.R. Laghari, A. Hammoud, Statistical analysis of multistress aging studies of polyetherimide, in 1993 Annual Report: Conference on Electrical Insulation and Dielectric Phenomena (IEEE, 1993) pp. 568--573Google Scholar
  57. 57.
    H. Vogel, Phys. Z. Leipzig 22, 645 (1921)Google Scholar
  58. 58.
    G. Tammann, W. Hesse, Z. Anorg. Allg. Chem. 156, 245 (1926)CrossRefGoogle Scholar
  59. 59.
    G.S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)CrossRefGoogle Scholar
  60. 60.
    M.L. Williams, R.F. Landel, J.D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955)CrossRefGoogle Scholar
  61. 61.
    U. Gedde, Polymer Physics (Kluwer Academics Press Publisher, Dordrecht, The Netherlands, 1995)Google Scholar
  62. 62.
    A.A. Angell, K.L. Ngai, G.B. Mc Kenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000)ADSCrossRefGoogle Scholar
  63. 63.
    C.A. Angell, J. Non-Cryst. Solids 73, 1 (1985)ADSCrossRefGoogle Scholar
  64. 64.
    L. Hartman, K. Fukao, F. Kremer, Molecular dynamics in thin polymer films, in Broadband Dielectric Spectroscopy, edited by F. Kremer, A. Schönhals (Springer-Verlag, Berlin, 2003) Chapt. 11, pp. 433--473Google Scholar
  65. 65.
    A.P. Sokolov, V.N. Novikov, Y. Ding, J. Phys.: Condens. Matter 19, 205116 (2007)ADSGoogle Scholar
  66. 66.
    Qian Qin, Gregory B. McKenna, J. Non-Cryst. Solids 352, 2977 (2006)ADSCrossRefGoogle Scholar
  67. 67.
    Sindee L. Simon, Donald J. Plazek, J. William Sobieski, Eric T. McGregor, J. Polym. Sci. Part B: Polym. Phys. 35, 929 (1997)ADSCrossRefGoogle Scholar
  68. 68.
    N. Zebouchi, V.H. Truong, R. Essolbi, M. Se-Ondoua, D. Malec, N. Vella, S. Malrieu, A. Toureille, F. Schu, R.G. Jones, Polym. Int. 46, 54 (1998)CrossRefGoogle Scholar
  69. 69.
    M.H.A. Kramers, Nature (London) 117, 775 (1926) (Royal Danish Academy of Sciences and Letters Note on Kramers remarks)Google Scholar
  70. 70.
    M.H.A. Kramers, La diffusion de la lumière par les atomes, in Atti del Congresso Internazionale dei Fisici, Como, 11-20 Settembre 1927, Vol. II (Zanichelli, 1928) pp. 545--557Google Scholar
  71. 71.
    R. de L. Kronig, J. Opt. Soc. Am. 12, 547 (1926)ADSCrossRefGoogle Scholar
  72. 72.
    J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)MathSciNetCrossRefGoogle Scholar
  73. 73.
    J.R. Macdonald, L.D. Potter jr., Solid State Ion. 24, 61 (1987)CrossRefGoogle Scholar
  74. 74.
    R. Kohlrausch, Annalen der Physik und der Physikalischen Chemie 91, 179 (1854)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.General Electric Global ResearchNiskayunaUSA

Personalised recommendations