Single particle Brownian motion with solid friction

Regular Article

Abstract.

We study the Brownian dynamics of a solid particle on a vibrating solid surface. Phenomenologically, the interaction between the two solid surfaces is modeled by solid friction, and the Gaussian white noise models the vibration of the solid surface. The solid friction force is proportional to the sign of relative velocity. We derive the Fokker-Planck (FP) equation for the time-dependent probability distribution to find the particle at a given location. We calculate analytically the steady state velocity distribution function, mean-square velocity and diffusion coefficient in d-dimensions. We present a generic method of calculating the autocorrelations in d-dimensions. This results in one dimension in an exact evaluation of the steady state velocity autocorrelation. In higher dimensions our exact general expression enables the analytic evaluation of the autocorrelation to any required approximation. We present approximate analytic expressions in two and three dimensions. Next, we numerically calculate the mean-square velocity and steady state velocity autocorrelation function up to d = 3 . Our numerical results are in good agreement with the analytically obtained results.

Graphical abstract

Keywords

Flowing Matter: Granular Matter 

References

  1. 1.
    V. Balakrishnan, Elements of Nonequilibrium Statistical Mechanics (CRC Press, 2008)Google Scholar
  2. 2.
    L. Da Vinci, Static measurements of sliding and rolling friction, Codex Arundel, folios 40v, 41r, British LibraryGoogle Scholar
  3. 3.
    G. Amontons, Histoire de l’Academie Royale des Sciences avec les Memoires de Mathematique et de Physique, 1699-1708 (Chez Gerald Kuyper, Amsterdam, 1706-1709) p. 206Google Scholar
  4. 4.
    C.A. De Coulomb, Théorie des machines simples, en ayant égard au frottement de leurs parties et à la roideur des cordages (reprinted by Bachelier, Paris, 1821)Google Scholar
  5. 5.
    H. Olsson, K.J. Aström, C. Canudas de Wit, M. Gäfvert, P. Lischinsky, Eur. J. Control 4, 176 (1998)CrossRefGoogle Scholar
  6. 6.
    B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 1998)Google Scholar
  7. 7.
    J.-C. Piedboeuf, J. de Carufel, R. Hurteau, Multibody Syst. Dyn. 4, 341 (2000)CrossRefGoogle Scholar
  8. 8.
    E.J. Berger, Appl. Mech. Rev. 55, 535 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    F.-J. Elmer, J. Phys. A: Math. Gen. 30, 6057 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    R.I. Leine, D.H. van Campen, A. de Kraker, L. van den Steen, Nonlinear Dyn. 16, 41 (1998)CrossRefGoogle Scholar
  11. 11.
    Q. Feng, Comput. Methods Appl. Mech. Eng. 192, 2339 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    G.J. Stein, R. Zahoransky, P. Mucka, J. Sound Vib. 311, 74 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    R. Blumenfeld, S.F. Edwards, M. Schwartz, Eur. Phys. J. E 32, 333 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Schwartz, R. Blumenfeld, Granular Matter 13, 241 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Schwartz, R. Blumenfeld, arXiv:1310.0983 [cond-mat.soft]
  16. 16.
    P. Das, S. Puri, M. Schwartz, Phys. Rev. E 94, 032907 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Murayama, M. Sano, J. Phys. Soc. Jpn. 67, 1826 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    A. Kawarada, H. Hayakawa, J. Phys. Soc. Jpn. 73, 2037 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    G. Peng, H.J. Herrmann, Phys. Rev. E 49, R1796 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    G. Peng, H.J. Herrmann, Phys. Rev. E 51, 1745 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    O. Moriyama, N. Kuroiwa, M. Matsushita, H. Hayakawa, Phys. Rev. Lett. 80, 2833 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    E. Azana, F. Chevoir, P. Moucheront, J. Fluid Mech. 400, 199 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    A. Buguin, F. Brochard, P.G. de Gennes, Eur. Phys. J. E 19, 31 (2006)CrossRefGoogle Scholar
  24. 24.
    D. Fleishman, Y. Asscher, M. Urbakh, J. Phys.: Condens. Matter 19, 096004 (2007)ADSGoogle Scholar
  25. 25.
    P.S. Goohpattader, S. Mettu, M.K. Chaudhury, Langmuir 25, 9969 (2009)CrossRefGoogle Scholar
  26. 26.
    A. Gnoli, A. Puglisi, H. Touchette, EPL 102, 014002 (2013)CrossRefGoogle Scholar
  27. 27.
    A. Gnoli, A. Petri, F. Dalton, G. Pontuale, G. Gradenigo, A. Sarracino, A. Puglisi, Phys. Rev. Lett. 110, 120601 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    A. Mauger, Physica A 367, 129 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Chen, A. Baule, H. Touchette, W. Just, Phys. Rev. E 88, 052103 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Chen, W. Just, Phys. Rev. E 90, 042102 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    T.G. Sano, K. Kanazawa, H. Hayakawa, Phys. Rev. E 94, 032910 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    A.A. Dubkov, P. Hänggi, I Goychuk, J. Stat. Mech. 2009, P01034 (2009)Google Scholar
  33. 33.
    J. Talbot, R.D. Wildman, P. Viot, Phys. Rev. Lett. 107, 138001 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    A. Baule, P. Sollich, EPL 97, 020001 (2012)CrossRefGoogle Scholar
  35. 35.
    T.G. Sano, H. Hayakawa, Phys. Rev. E 94, 032104 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    K. kanazawa, T.G. Sano, T. Sagawa, H. Hayakawa, J. Stat. Phys. 160, 1294 (2015)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    P.G. de Gennes, J. Stat. Phys. 119, 953 (2005)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    H. Hayakawa, Physica D 205, 48 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    A. Baule, E.G.D. Cohen, H. Touchette, J. Phys. A: Math. Theor. 43, 025003 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    A. Baule, H. Touchette, E.G.D. Cohen, Nonlinearity 24, 351 (2011)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    H. Touchette, E. van der Straeten, W. Just, J. Phys. A: Math. Theor. 43, 445002 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    A.M. Menzel, N. Goldenfeld, Phys. Rev. E 84, 011122 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    A.M. Menzel, Phys. Rev. E 92, 052308 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    P.E. Kloedan, E. Plater, Numerical Solutions of Stochastic Differential Equations (Springer-Verlag, Berlin, 1992)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Beverly and Raymond Sackler School of Physics and AstronomyTel Aviv UniversityRamat AvivIsrael
  3. 3.Faculty of EngineeringHolon Institute of TechnologyHolonIsrael

Personalised recommendations