Skip to main content
Log in

Transport of alignment active particles in funnel structures

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study the transport of alignment active particles in complex confined structures (an array of asymmetric funnels). It is found that due to the existence of the multiple pathways, the alignment interaction can enrich the transport behavior of active particles. In an array of asymmetric funnels, the purely nematic alignment always suppresses the rectification. However, the polar alignment does not always promote the rectification, the rectification is suppressed for large self-propulsion speed. In addition, we also found the existence of optimal parameters (the self-propulsion speed and the rotational diffusion coefficient) at which the directed velocity takes its maximal value.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bechinger, R.D. Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)

    Article  ADS  Google Scholar 

  2. M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)

    Article  ADS  Google Scholar 

  3. T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)

    Article  ADS  Google Scholar 

  4. J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)

    Article  ADS  Google Scholar 

  5. P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. ST 202, 1 (2012)

    Article  Google Scholar 

  6. J.K. Parrish, W.M. Hamner, Math. Gaz. 83, 497 (1999)

    Article  Google Scholar 

  7. P. Romanczkuk, I.D. Couzin, L. Schimansky-Geier, Phys. Rev. Lett. 102, 010602 (2009)

    Article  ADS  Google Scholar 

  8. V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007)

    Article  ADS  Google Scholar 

  9. A. Kudrolli, G. Lumay, D. Volfson, L.S. Tsimring, Phys. Rev. Lett. 100, 058001 (2008)

    Article  ADS  Google Scholar 

  10. A. Kudrolli, Phys. Rev. Lett. 104, 088001 (2010)

    Article  ADS  Google Scholar 

  11. J. Deseigne, O. Dauchot, H. Chaté, Phys. Rev. Lett. 105, 098001 (2010)

    Article  ADS  Google Scholar 

  12. V.B. Shenoy, D.T. Tambe, A. Prasad, J.A. Theriot, Proc. Natl. Acad. Sci. U.S.A. 104, 8229 (2007)

    Article  ADS  Google Scholar 

  13. M. Liu, T. Zentgraf, Y. Liu, G. Bartal, X. Zhang, Nat. Nanotechnol. 5, 570 (2010)

    Article  ADS  Google Scholar 

  14. D. Ahmed, M. Lu, A. Nourhani, P.E. Lammert, Z. Stratton, H.S. Muddana, V.H. Crespi, T.J. Huang, Sci. Rep. 5, 9744 (2015)

    Article  ADS  Google Scholar 

  15. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    Article  ADS  Google Scholar 

  16. J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010)

    Article  ADS  Google Scholar 

  17. H.R. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 105, 268302 (2010)

    Article  ADS  Google Scholar 

  18. P. Galajda, J. Keymer, P. Chaikin, R. Austin, J. Bacteriol. 189, 8704 (2007)

    Article  Google Scholar 

  19. R.D. Leonardo, L. Angelani, D. DellArciprete, G. Ruocco, V. Iebba, S. Schippa, M.P. Conte, F. Mecarini, F. DeAngelis, E.D. Fabrizio, Proc. Natl. Acad. Sci. U.S.A. 107, 9541 (2010)

    Article  ADS  Google Scholar 

  20. J. Schwarz-Linek, C. Valeriani, A. Cacciuto, M.E. Cates, D. Marenduzzo, A.N. Morozov, W.C. Poon, Proc. Natl. Acad. Sci. U.S.A. 109, 4052 (2012)

    Article  ADS  Google Scholar 

  21. A. Sokolov, M.M. Apodac, B.A. Grzybowski, I.S. Aranson, Proc. Natl. Acad. Sci. U.S.A. 107, 969 (2010)

    Article  ADS  Google Scholar 

  22. A. Bricard, J. Caussin, N. Desreumaux, O. Dauchot, D Bartolo, Nature 503, 95 (2013)

    Article  ADS  Google Scholar 

  23. H. Li, H.P. Zhang, EPL 102, 50007 (2013)

    Article  ADS  Google Scholar 

  24. A. Kaiser, A. Peshkov, A. Sokolov, H.B. Ten, I.S. Aranson, Phys. Rev. Lett. 112, 158101 (2014)

    Article  ADS  Google Scholar 

  25. M.B. Wan, C.J. Olson, Z. Nussinov, C. Reichhardt, Phys. Rev. Lett. 101, 018102 (2008)

    Article  ADS  Google Scholar 

  26. A. Pototsky, A.M. Hahn, H. Stark, Phys. Rev. E 87, 042124 (2013)

    Article  ADS  Google Scholar 

  27. F.Q. Potiguar, G.A. Farias, W.P. Ferreira, Phys. Rev. E 90, 012307 (2014)

    Article  ADS  Google Scholar 

  28. A. Guidobaldi, Y. Jeyaram, I. Berdakin, V.V. Moshchalkov, C.A. Condat, V.I. Marconi, L. Giojalas, A.V. Silhanek, Phys. Rev. E 89, 032720 (2014)

    Article  ADS  Google Scholar 

  29. I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)

    Article  ADS  Google Scholar 

  30. Y. Fily, M.C. Marchetti, Phys. Rev. Lett. 108, 235702 (2012)

    Article  ADS  Google Scholar 

  31. J. Stenhammar, R. Wittkowski, D. Marenduzzo, M.E. Cates, Phys. Rev. Lett. 114, 018301 (2015)

    Article  ADS  Google Scholar 

  32. C. Reichhardt, C.J. Olson, arXiv:1604.01072 (2016)

  33. L. Angelani, R.D. Leonardo, G. Ruocco, Phys. Rev. Lett. 102, 048104 (2009)

    Article  ADS  Google Scholar 

  34. B.Q. Ai, Q.Y. Chen, Y.F. He, F.G. Li, W.R. Zhong, Phys. Rev. E 88, 062129 (2013)

    Article  ADS  Google Scholar 

  35. C. Reichhardt, C.J. Olson, Phys. Rev. E 88, 062310 (2013)

    Article  ADS  Google Scholar 

  36. P.K. Ghosh, V.R. Misko, F. Marchesoni, F. Nori, Phys. Rev. Lett. 110, 268301 (2013)

    Article  ADS  Google Scholar 

  37. N. Koumakis, C. Maggi, R.D. Leonardo, Soft Matter 10, 5695 (2014)

    Article  ADS  Google Scholar 

  38. Y.F. Chen, So Xiao, H.Y. Chen, Y.J. Sheng, H.K. Tsao, Nanoscale 7, 16451 (2015)

    Article  ADS  Google Scholar 

  39. V. Kantsler, J. Dunkel, M. Polin, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 110, 4 (2013)

    Article  Google Scholar 

  40. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  41. F. Ginelli, F. Peruani, M. Bar, H. Chaté, Phys. Rev. Lett. 104, 184502 (2010)

    Article  ADS  Google Scholar 

  42. O. Chepizhko, F. Peruani, Phys. Rev. Lett. 111, 106604 (2013)

    Article  Google Scholar 

  43. S. Ngo, F. Ginelli, H. Chaté, Phys. Rev. E 86, 050101 (2012)

    Article  ADS  Google Scholar 

  44. K.H. Nagai, Y. Sumino, R. Montagne, I.S. Aranson, H. Chaté, Phys. Rev. Lett. 114, 168001 (2015)

    Article  ADS  Google Scholar 

  45. B.Q. Ai, W.J. Zhu, Y.F. He, W.R. Zhong, J. Stat. Mech. 2017, 023501 (2017)

    Article  Google Scholar 

  46. F. Peruani, F. Ginelli, M. Bär, H. Chaté, J. Phys.: Conf. Ser. 297, 012014 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-quan Ai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Wj., Li, Fg. & Ai, Bq. Transport of alignment active particles in funnel structures. Eur. Phys. J. E 40, 59 (2017). https://doi.org/10.1140/epje/i2017-11547-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11547-y

Keywords

Navigation