Quantum effects in dynamics of water and other liquids of light molecules

Colloquium

Abstract.

Nuclear quantum effects in atomic motions are well known at low temperatures \(T < 10\) K, but analyses of structural relaxation in liquids and description of the glass transition traditionally neglect quantum effects at higher temperatures, \( T > 50-100\) K. Recent studies, however, suggested that nuclear quantum effects in systems of light molecules (e.g., water) might play an important role in structural dynamics and provide non-negligible contributions at such temperatures, and even up to ambient temperature. In this article, we discuss experimental evidences of the quantum effects in glass transition in liquids of light molecules and possible theoretical descriptions of these effects. We show that quantum effects may qualitatively change the temperature behavior of the structural relaxation time in supercooled liquids leading to deviations of some well-established properties of the glass transition when it happens at low temperatures. We also demonstrate that unusual behavior of water dynamics at low temperatures, including apparent fragile-to-strong crossover, can be ascribed to nuclear quantum effects.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    R.C. Zeller, R.O. Pohl, Phys. Rev. B 4, 2029 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    P.W. Anderson, B.I. Halperin, C.M. Varma, Philos. Mag. 25, 1 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    P. Esquinazi (Editor), Tunneling Systems in Amorphous and Crystalline Solids (Springer, 1998)Google Scholar
  4. 4.
    W.A. Phillips (Editor), Amorphous Solids: Low-Temperature Properties (Springer, Berlin, 1981)Google Scholar
  5. 5.
    W.A. Phillips, Rep. Prog. Phys. 50, 1657 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    W. Press, Single Particle Rotations in Molecular Crystals, Springer Tracts Mod. Phys., Vol. 92 (Springer, Berlin, 1981)Google Scholar
  7. 7.
    V.A. Benderskii, D.E. Makarov, C.A. Wight, Chemical Dynamics at Low Temperatures (John Wiley & Sons, Inc., NY, 1994)Google Scholar
  8. 8.
    C. Chakravarty, J. Chem. Phys. 103, 10663 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    T.E. Markland, J.A. Morrone, B.J. Berne et al., Nat. Phys. 7, 134 (2011)CrossRefGoogle Scholar
  10. 10.
    C. Chakravarty, J. Phys. Chem. A 115, 7028 (2011)CrossRefGoogle Scholar
  11. 11.
    T.E. Markland, J.A. Morrone, K. Miyazaki, B.J. Berne, D.R. Reichman, E. Rabani, J. Chem. Phys. 136, 074511 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    L. Wang, M. Ceriotti, T.E. Markland, J. Chem. Phys. 141, 104502 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    S. Habershon, T.E. Markland, D.E. Manolopoulos, J. Chem. Phys. 131, 024501 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    T.F. Miller III, D.E. Manolopoulos, J. Chem. Phys. 123, 154504 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    L. Proville, D. Rodney, M.-C. Marinica, Nat. Mater. 11, 845 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    J. de Boer, in Progress in Low Temperature Physics, edited by J.C. Gorter, Vol. 2 (North-Holland, Amsterdam, 1957)Google Scholar
  17. 17.
    C. Chakravarty, J. Chem. Phys. 103, 10663 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    L.D. Landau, L.M. Lifshitz, Quantum Mechanics (Butterworth-Heinemann, Oxford, 1981)Google Scholar
  19. 19.
    D. Waxman, A.J. Leggett, Phys. Rev. B 32, 4450 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    F.A. Lindemann, Physik. Z. 11, 609 (1910)Google Scholar
  21. 21.
    D. Turnbull, Contemp. Phys. 10, 473 (1969)ADSCrossRefGoogle Scholar
  22. 22.
    V.N. Novikov, A.P. Sokolov, Phys. Rev. Lett. 110, 065701 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    J.C. Dyre, N.B. Olsen, T. Christensen, Phys. Rev. B 53, 2171 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    A.L. Agapov, A.I. Kolesnikov, V.N. Novikov, R. Richert, A.P. Sokolov, Phys. Rev. E 91, 022312 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    R.W. Hall, P.G. Wolynes, J. Chem. Phys. 86, 2943 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    U. Buchenau, R. Zorn, Europhys. Lett. 18, 523 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    V.N. Novikov, A.P. Sokolov, Phys. Rev. E 67, 031507 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    C.M. Roland, K.L. Ngai, J. Chem. Phys. 104, 2967 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    F.W. Starr, S. Sastry, J.F. Douglas, S.C. Glotzer, Phys. Rev. Lett. 89, 125501 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    L. Larini, A. Ottochian, C. De Michele, D. Leporini, Nat. Phys. 4, 42 (2008)CrossRefGoogle Scholar
  32. 32.
    D.S. Simmons, M.T. Cicerone, Q. Zhong, M. Tyagi, J.F. Douglas, Soft Matter 8, 11455 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    B.A. Pazmiño Betancourt, P.Z. Hanakata, F.W. Starr, J.F. Douglas, Proc. Natl. Acad. Sci. U.S.A. 112, 2966 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    A.A. Maradudin, E.W. Montroll, G.H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, 1963) Chapt. VIIGoogle Scholar
  35. 35.
    V.N. Novikov, E.A. Rössler, Polymer 54, 6987 (2013)CrossRefGoogle Scholar
  36. 36.
    C. Gainaru, A.L. Agapov, V. Fuentes-Landete, K. Amann-Winkel, H. Nelson, K. Köster, A.I. Kolesnikov, V.N. Novikov, R. Richert, R. Böhmer, T. Loerting, A.P. Sokolov, Proc. Natl. Acad. Sci. U.S.A. 111, 17402 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S.-H. Chen, H.E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 107, 22457 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    C.A. Angell, J. Non-Cryst. Solids 73, 1 (1985)ADSCrossRefGoogle Scholar
  39. 39.
    C.A. Angell, Science 267, 1924 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    R. Böhmer, K.L. Ngai, A.C. Angell, D.J. Plazek, J. Chem. Phys. 99, 4201 (1993)ADSCrossRefGoogle Scholar
  41. 41.
    Q. Qin, G.B. McKenna, J. Non-Cryst. Solids 352, 2977 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    A. Agapov, V.N. Novikov, A. Kisliuk, R. Richert, A.P. Sokolov, J. Chem. Phys. 145, 234507 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    W. Huang, S. Shahriari, R. Richert, J. Chem. Phys. 123, 164504 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    S. Shahriari, A. Mandanici, L.M. Wang, R. Richert, J. Chem. Phys. 121, 8960 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    M. Ceriotti, J. Cuny, M. Parrinello, D.E. Manolopoulos, Proc. Natl. Acad. Sci. U.S.A. 110, 15591 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    B. Chen, I. Ivanov, M.L. Klein, M. Parrinello, Phys. Rev. Lett. 91, 215503 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    J.A. Morrone, R. Car, Phys. Rev. Lett. 101, 017801 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    B. Pamuk, J.M. Soler, R. Ramirez, C.P. Herrero, P.W. Stephens, P.B. Allen, M.-V. Fernandez-Serra, Phys. Rev. Lett. 108, 193003 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    A. Pietropaolo, R. Senesi, C. Andreani, A. Botti, M.A. Ricci, F. Bruni, Phys. Rev. Lett. 100, 127802 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    H. Wipf, A. Magerl, S.M. Shapiro, S.K. Satija, W. Thomlinson, Phys. Rev. Lett. 46, 947 (1981)ADSCrossRefGoogle Scholar
  51. 51.
    M. Prager, A. Heidemann, Chem. Rev. 97, 2933 (1997)CrossRefGoogle Scholar
  52. 52.
    A.I. Kolesnikov, G.F. Reiter, N. Choudhury, T.R. Prisk, E. Mamontov, A. Podlesnyak, G. Ehlers, A.G. Seel, D.J. Wesolowski, L.M. Anovitz, Phys. Rev. Lett. 116, 167802 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    M.-S. Chen, L. Onsager, J. Bonner, J. Nagle, J. Chem. Phys. 60, 405 (1974)ADSCrossRefGoogle Scholar
  54. 54.
    F. Bruni, G. Consolini, G. Careri, J. Chem. Phys. 99, 538 (1993)ADSCrossRefGoogle Scholar
  55. 55.
    S.F. Fisher, G.L. Hofacker, in Physics of Ice, edited by N. Riehl, B. Bullemer, H. Engelhardt (Plenum, New York, 1969)Google Scholar
  56. 56.
    M. Benoit, D. Marx, M. Parrinello, Nature 392, 258 (1998)ADSCrossRefGoogle Scholar
  57. 57.
    R.S. Smith, B.D. Kay, Nature 398, 788 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    C.A. Angell, Chem. Rev. 102, 2627 (2002)CrossRefGoogle Scholar
  59. 59.
    G.P. Johari, J. Chem. Phys. 122, 144508 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    A. Hallbrucker, E. Mayer, G.P. Johari, J. Phys. Chem. 93, 4986 (1989)CrossRefGoogle Scholar
  61. 61.
    G.P. Johari, A. Hallbrucker, E. Mayer, Nature 330, 552 (1987)ADSCrossRefGoogle Scholar
  62. 62.
    G.P. Johari, A. Hallbrucker, E. Mayer, Science 273, 90 (1996)ADSCrossRefGoogle Scholar
  63. 63.
    D.R. MacFarlane, C.A. Angell, J. Phys. Chem. 88, 759 (1984)CrossRefGoogle Scholar
  64. 64.
    Y.P. Handa, D.D. Klug, J. Phys. Chem. 92, 3323 (1988)CrossRefGoogle Scholar
  65. 65.
    C.A. Tulk, D.D. Klug, R. Branderhorst, P. Sharpe, J.A. Ripmeester, J. Chem. Phys. 109, 8478 (1998)ADSCrossRefGoogle Scholar
  66. 66.
    M.S. Elsaesser, K. Winkel, E. Mayer, T. Loerting, Phys. Chem. Chem. Phys. 12, 708 (2010)CrossRefGoogle Scholar
  67. 67.
    K. Amann-Winkel, C. Gainaru, P.H. Handle, M. Seidl, H. Nelson, R. Böhmer, T. Loerting, Proc. Natl. Acad. Sci. U.S.A. 110, 17720 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    L.P. Singh, R. Richert, Rev. Sci. Instrum. 83, 033903 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    M.A. Ramos, C. Talón, R.J. Jiménez-Riobóo, S. Vieira, J. Phys.: Condens. Matter 15, S1007 (2003)Google Scholar
  70. 70.
    A.I. Kolesnikov, J.C. Li, S. Dong, I.F. Bailey, R.S. Eccleston, W. Hahn, S.F. Parker, Phys. Rev. Lett. 79, 1869 (1997)ADSCrossRefGoogle Scholar
  71. 71.
    J. Li, A.I. Kolesnikov, J. Mol. Liq. 100, 1 (2002)CrossRefGoogle Scholar
  72. 72.
    J. Li, J. Chem. Phys. 105, 6733 (1996)ADSCrossRefGoogle Scholar
  73. 73.
    D.D. Klug, E. Whalley, E.C. Svensson, J.H. Root, V.F. Sears, Phys. Rev. B 44, 841 (1991)ADSCrossRefGoogle Scholar
  74. 74.
    C.A. Angell, J. Phys. Chem. 97, 6339 (1993)CrossRefGoogle Scholar
  75. 75.
    K. Ito, C.T. Moynihan, C.A. Angell, Nature 398, 492 (1999)ADSCrossRefGoogle Scholar
  76. 76.
    P.H. Poole, F. Sciortino, U. Essmann, H.E. Stanley, Nature 360, 324 (1992)ADSCrossRefGoogle Scholar
  77. 77.
    S.-H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone, E. Mamontov, Proc. Natl. Acad. Sci. U.S.A. 103, 9012 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    C.A. Angell, Science 319, 582 (2008)CrossRefGoogle Scholar
  79. 79.
    J.C. Palmer, F. Martelli, Y. Liu, R. Car, A.Z. Panagiotopoulos, P.G. Debenedetti, Nature 510, 385 (2014)ADSCrossRefGoogle Scholar
  80. 80.
    P. Gallo, K. Amann-Winkel, C.A. Angell et al., Chem. Rev. 116, 7463 (2016)CrossRefGoogle Scholar
  81. 81.
    D.T. Limmer, D. Chandler, J. Chem. Phys. 135, 134503 (2011)ADSCrossRefGoogle Scholar
  82. 82.
    J.A. Sellberg, C. Huang, T.A. McQueen et al., Nature 510, 381 (2014)ADSCrossRefGoogle Scholar
  83. 83.
    R. Buchner, J. Barthel, J. Stauber, Chem. Phys. Lett. 306, 57 (1999)ADSCrossRefGoogle Scholar
  84. 84.
    A.K. Soper, Nat. Mater. 13, 671 (2014)ADSCrossRefGoogle Scholar
  85. 85.
    J. Qvist, C. Mattea, E.P Sunde, B. Halle, J. Chem. Phys. 136, 204505 (2012)ADSCrossRefGoogle Scholar
  86. 86.
    J.J. Shephard, C.G. Salzmann, J. Phys. Chem. Lett. 7, 2281 (2016)CrossRefGoogle Scholar
  87. 87.
    J. Qvist, H. Schober, B. Halle, J. Chem. Phys. 134, 144508 (2011)ADSCrossRefGoogle Scholar
  88. 88.
    O. Yamamuro, M. Oguni, T. Matsuo, H. Suga, J. Phys. Chem. Solids 48, 935 (1987)ADSCrossRefGoogle Scholar
  89. 89.
    S.R. Gough, D.W. Davidson, J. Chem. Phys. 52, 5442 (1970)ADSCrossRefGoogle Scholar
  90. 90.
    H. Suga, S. Seki, Faraday Discuss. Chem. Soc. 69, 221 (1980)CrossRefGoogle Scholar
  91. 91.
    G.P. Johari, E. Whalley, J. Chem. Phys. 115, 3274 (2001)ADSCrossRefGoogle Scholar
  92. 92.
    O. Wörz, R.H. Cole, J. Chem Phys. 51, 1546 (1969)ADSCrossRefGoogle Scholar
  93. 93.
    G.F. Reiter, A.I. Kolesnikov, S.J. Paddison, P.M. Platzman, A.P. Moravsky, M.A. Adams, J. Mayers, Phys. Rev. B 85, 045403 (2012)ADSCrossRefGoogle Scholar
  94. 94.
    G. Reiter, C. Burnham, D. Homouz et al., Phys. Rev. Lett. 97, 247801 (2006)ADSCrossRefGoogle Scholar
  95. 95.
    A. Agapov, V.N. Novikov, A. Kisliuk, R. Richert, A.P. Sokolov, J. Chem. Phys. 145, 234507 (2016)ADSCrossRefGoogle Scholar
  96. 96.
    H.E. Stamley (Editor), Liquid Polymorphysm, Adv. Chem. Phys., Vol. 152 (Wiley, Hoboken NJ, 2013). *1.5ptGoogle Scholar
  97. 97.
    M. Arndt, R. Stannarius, H. Groothues, E. Hempel, F. Kremer, Phys. Rev. Lett. 79, 2077 (1997)ADSCrossRefGoogle Scholar
  98. 98.
    M. Arndt, R. Stannarius, W. Gorbatschow, F. Kremer, Phys. Rev. E 54, 5377 (1996)ADSCrossRefGoogle Scholar
  99. 99.
    F. Kremer (Editor), Dynamics in Geometrical Confinement (Springer, New York, 2014). *1.5ptGoogle Scholar
  100. 100.
    R. Richert, Annu. Rev. Phys. Chem. 62, 65 (2011)ADSCrossRefGoogle Scholar
  101. 101.
    M. Alcoutlabi, G.B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005)ADSGoogle Scholar
  102. 102.
    M. Heres, Y. Wang, P.J. Griffin, C. Gainaru, A.P. Sokolov, Phys. Rev. Lett. 117, 156001 (2016)ADSCrossRefGoogle Scholar
  103. 103.
    M. Boninsegni, L. Pollet, N. Prokof'ev, B. Svistunov, Phys. Rev. Lett. 109, 025302 (2012)ADSCrossRefGoogle Scholar
  104. 104.
    C.A. Chatzidimitriou-Dreismann, E. Brandas, Int. J. Quantum Chem. 37, 155 (1990)CrossRefGoogle Scholar
  105. 105.
    C.A. Chatzidimitriou-Dreismann, Int. J. Quantum Chem. Symp. 23, 153 (1989)Google Scholar
  106. 106.
    H. Weingartner, C.A. Chatzidimitriou-Dreismann, Nature 346, 548 (1990)ADSCrossRefGoogle Scholar
  107. 107.
    C.A. Chatzidimitriou-Dreismann, U.K. Krieger, A. Möller, M. Stern, Phys. Rev. Lett. 75, 3008 (1995)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of TennesseeKnoxvilleUSA
  2. 2.Shull Wollan Center - Joint-Institute for Neutron SciencesOak Ridge National Laboratory and University of TennesseeOak RidgeUSA
  3. 3.Institute of Automation and ElectrometryRussian Academy of SciencesNovosibirskRussia
  4. 4.Chemical Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  5. 5.Department of Physics and AstronomyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations