Quantum effects in dynamics of water and other liquids of light molecules


DOI: 10.1140/epje/i2017-11546-0

Cite this article as:
Novikov, V.N. & Sokolov, A.P. Eur. Phys. J. E (2017) 40: 57. doi:10.1140/epje/i2017-11546-0


Nuclear quantum effects in atomic motions are well known at low temperatures \(T < 10\) K, but analyses of structural relaxation in liquids and description of the glass transition traditionally neglect quantum effects at higher temperatures, \( T > 50-100\) K. Recent studies, however, suggested that nuclear quantum effects in systems of light molecules (e.g., water) might play an important role in structural dynamics and provide non-negligible contributions at such temperatures, and even up to ambient temperature. In this article, we discuss experimental evidences of the quantum effects in glass transition in liquids of light molecules and possible theoretical descriptions of these effects. We show that quantum effects may qualitatively change the temperature behavior of the structural relaxation time in supercooled liquids leading to deviations of some well-established properties of the glass transition when it happens at low temperatures. We also demonstrate that unusual behavior of water dynamics at low temperatures, including apparent fragile-to-strong crossover, can be ascribed to nuclear quantum effects.

Graphical abstract


Flowing Matter: Liquids and Complex Fluids 

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of TennesseeKnoxvilleUSA
  2. 2.Shull Wollan Center - Joint-Institute for Neutron SciencesOak Ridge National Laboratory and University of TennesseeOak RidgeUSA
  3. 3.Institute of Automation and ElectrometryRussian Academy of SciencesNovosibirskRussia
  4. 4.Chemical Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  5. 5.Department of Physics and AstronomyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations