Preferential hydration fully controls the renaturation dynamics of collagen in water-glycerol solvents

Regular Article


Glycerol is one of the additives which stabilize collagen, as well as globular proteins, against thermally induced denaturation --an effect explained by preferential hydration, i.e. by the formation, in water/glycerol solvents, of a hydration layer whose entropic cost favors the more compact triple-helix native structure against the denatured one, gelatin. Quenching gelatin solutions promotes renaturation which, however, remains incomplete, as the formation of a gel network gives rise to growing topological constraints. So, gelatin gels exhibit glass-like dynamical features such as slow aging of their shear modulus and stretched exponential stress relaxation, the study of which gives us access to the re(de)naturation dynamics of collagen. We show that this dynamics is independent of the bulk solvent viscosity and controlled by a single parameter, the undercooling \( \Delta T\) below the glycerol-concentration-dependent denaturation temperature. This provides direct proof of i) the presence of a nanometer thick, glycerol-free hydration layer, ii) the high locality of the kinetically limiting process governing renaturation.

Graphical abstract


Soft Matter: Polymers and Polyelectrolytes 


  1. 1.
    S.N. Timasheff, in Linkage Thermodynamics of Macromolecular Interactions, edited by E.D. Cera, Advances in Protein Chemistry, Vol. 51 (Academic Press, 1998) pp. 355--432Google Scholar
  2. 2.
    K. Gekko, S. Koga, J. Biochem. 94, 199 (1983)CrossRefGoogle Scholar
  3. 3.
    G.C. Na, Biochemistry 25, 967 (1986)CrossRefGoogle Scholar
  4. 4.
    R. Penkova, I. Goshev, S. Gorinstein, P. Nedkov, Food Chem. 66, 483 (1999)CrossRefGoogle Scholar
  5. 5.
    S. Sanwlani, P. Kumar, H. Bohidar, J. Phys. Chem. B 115, 7332 (2011)CrossRefGoogle Scholar
  6. 6.
    K. te Nijenhuis, Thermoreversible Networks: Viscoelastic Properties and Structure of Gels, Advances in Polymer Science, Vol. 130 (Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 1997) pp. 160--193, ISBN: 978-3-540-70731-8Google Scholar
  7. 7.
    M. Djabourov, K. Nishinari, S.B. Ross-Murphy, Physical Gels from Biological and Synthetic Polymers (Cambridge University Press, 2013)Google Scholar
  8. 8.
    H.P. Bächinger, P. Bruckner, R. Timpl, D.J. Prockop, J. Engel, Eur. J. Biochem. 106, 619 (1980)CrossRefGoogle Scholar
  9. 9.
    L. Guo, R.H. Colby, C.P. Lusignan, T.H. Whitesides, Macromolecules 36, 9999 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    L. Guo, R.H. Colby, C.P. Lusignan, A.M. Howe, Macromolecules 36, 10009 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    V. Normand, S. Muller, J.C. Ravey, A. Parker, Macromolecules 33, 1063 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    H. Souguir, O. Ronsin, C. Caroli, T. Baumberger, Phys. Rev. E 91, 042305 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M. Miller, J.D. Ferry, F.W. Schremp, J.E. Eldridge, J. Phys. Chem. 55, 1387 (1951)CrossRefGoogle Scholar
  14. 14.
    O. Ronsin, C. Caroli, T. Baumberger, Phys. Rev. Lett. 103, 138302 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    E. Evans, K. Ritchie, Biophys. J. 72, 1541 (1997)CrossRefGoogle Scholar
  16. 16.
    J.L. Laurent, P.A. Janmey, J.D. Ferry, J. Rheol. 24, 87 (1980)ADSCrossRefGoogle Scholar
  17. 17.
    T. Baumberger, C. Caroli, D. Martina, Nat. Mater. 5, 552 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    T. Baumberger, C. Caroli, D. Martina, Eur. Phys. J. E 21, 81 (2006)CrossRefGoogle Scholar
  19. 19.
    H. Frauenfelder, G. Chen, J. Berendzen, P.W. Fenimore, H. Jansson, B.H. McMahon, I.R. Stroe, J. Swenson, R.D. Young, Proc. Natl. Acad. Sci. U.S.A. 106, 5129 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut des Nanosciences de ParisSorbonne universités, UPMC univ Paris 6 and CNRS-UMR 7588ParisFrance

Personalised recommendations