Measuring thin films using quantitative frustrated total internal reflection (FTIR)

  • Minori Shirota
  • Michiel A. J. van Limbeek
  • Detlef Lohse
  • Chao Sun
Tips and Tricks

Abstract.

In the study of interactions between liquids and solids, an accurate measurement of the film thickness between the two media is essential to study the dynamics. As interferometry is restricted by the wavelength of the light source used, recent studies of thinner films have prompted the use of frustrated total internal reflection (FTIR). In many studies the assumption of a simple exponential decay of the intensity with film thickness was used. In the present study we highlight that this model does not satisfy the Fresnel equations and thus gives an underestimation of the films. We show that the multiple reflections and transmissions at both the upper and the lower interfaces of the film must be taken into account to accurately describe the measured intensity. In order to quantitatively validate the FTIR technique, we measured the film thickness of the air gap between a convex lens of known geometry and a flat surface and obtain excellent agreement. Furthermore, we also found that we can accurately measure the elastic deformations of the lens under loads by comparing them with the results of the Herzian theory.

Graphical abstract

Keywords

Tips and Tricks 

References

  1. 1.
    Y.P. Zhao, L.S. Wang, T.X. Yu, J. Adhes. Sci. Technol. 17, 519 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    R. Bruinsma, A. Behrisch, E. Sackmann, Phys. Rev. E 61, 4253 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    J. Schilling, K. Sengupta, S. Goennenwein, A. Bausch, E. Sackmann, Phys. Rev. E 69, 021901 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    T. Tran, H.J.J. Staat, A. Prosperetti, C. Sun, D. Lohse, Phys. Rev. Lett. 108, 036101 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    W. Bouwhuis, R.C.A. van der Veen, T. Tran, D.L. Keij, K.G. Winkels, I.R. Peters, D. van der Meer, C. Sun, J.H. Snoeijer, D. Lohse, Phys. Rev. Lett. 109, 264501 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    T. Tran, H.D. Maleprade, C. Sun, D. Lohse, J. Fluid Mech. 726, R3 (2013)CrossRefGoogle Scholar
  7. 7.
    R.C.A. van der Veen, M.H.W. Hendrix, T. Tran, C. Sun, P.A. Tsai, D. Lohse, Soft Matter 10, 3703 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    E. Hecht, Optics, 4th ed. (Addison Wesley Longman Inc, Boston, 1998)Google Scholar
  9. 9.
    J.M. Kolinski, S.M. Rubinstein, S. Mandre, M.P. Brenner, D.A. Weitz, L. Mahadevan, Phys. Rev. Lett. 108, 074503 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    J.M. Kolinski, L. Mahadevan, S.M. Rubinstein, Phys. Rev. Lett. 112, 134501 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    J.M. Kolinski, L. Mahadevan, S.M. Rubinstein, EPL 108, 24001 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    C. Khavari, C. Sun, D. Lohse, T. Tran, Soft Matter 11, 3298 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M. Shirota, M.A.J. van Limbeek, C. Sun, A. Prosperetti, D. Lohse, Phys. Rev. Lett. 116, 064501 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    M.A.J. van Limbeek, M. Shirota, C.P. Sleutel, C. Sun, A. Prosperetti, Int. J. Heat Mass Transfer 97, 101 (2016)CrossRefGoogle Scholar
  15. 15.
    C. Zettner, M. Yoda, Exp. Fluids 34, 115 (2003)CrossRefGoogle Scholar
  16. 16.
    J. Kim, Int. J. Heat Fluid Flow 28, 753 (2007)CrossRefGoogle Scholar
  17. 17.
    H. Hertz, J. Reine Angew. Math. 92, 156 (1881)Google Scholar
  18. 18.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, 1987)Google Scholar
  19. 19.
    I.N. Court, F.K. von Willisen, Appl. Opt. 3, 719 (1964)ADSCrossRefGoogle Scholar
  20. 20.
    S. Zhu, W. Yu, D. Hawley, R. Roy, Am. J. Phys. 54, 601 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    U.D. Schwarz, J. Colloid Interface Sci. 261, 99 (2003)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Minori Shirota
    • 1
  • Michiel A. J. van Limbeek
    • 2
  • Detlef Lohse
    • 2
    • 4
  • Chao Sun
    • 2
    • 3
  1. 1.Faculty of Science and TechnologyHirosaki UniversityAomoriJapan
  2. 2.Physics of Fluids Group, Mesa+ InstituteUniversity of TwenteAE EnschedeThe Netherlands
  3. 3.Center for Combustion Energy and Department of Thermal EngineeringTsinghua UniversityBeijingChina
  4. 4.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany

Personalised recommendations