Effects of interplay of nanoparticles, surfactants and base fluid on the surface tension of nanocolloids

  • A. R. Harikrishnan
  • Purbarun Dhar
  • Prabhat K. Agnihotri
  • Sateesh Gedupudi
  • Sarit K. Das
Regular Article
  • 104 Downloads

Abstract.

A systematically designed study has been conducted to understand and demarcate the degree of contribution by the constituting elements to the surface tension of nanocolloids. The effects of elements such as surfactants, particles and the combined effects of these on the surface tension of these complex fluids are studied employing the pendant drop shape analysis method by fitting the Young-Laplace equation. Only the particle has shown an increase in the surface tension with particle concentration in a polar medium like DI water, whereas only a marginal effect of particles on surface tension in weakly polar mediums like glycerol and ethylene glycol has been demonstrated. Such behaviour has been attributed to the enhanced desorption of particles to the interface and a theory has been presented to quantify this. The combined particle and surfactant effect on the surface tension of a complex nanofluid system showed a decreasing behaviour with respect to the particle and surfactant concentration with a considerably feeble effect of particle concentration. This combined colloidal system recorded a surface tension value below the surface tension of an aqueous surfactant system at the same concentration, which is a counterintuitive observation as only the particle results in an increase in the surface tension and only the surfactant results in a decrease in the surface tension. The possible physical mechanism behind such an anomaly happening at the complex fluid air interface has been explained. Detailed analyses based on thermodynamic, mechanical and chemical equilibrium of the constituents and their adsorption-desorption characteristics as extracted from the Gibbs adsorption analysis have been provided. The present paper conclusively explains several physical phenomena observed, yet hitherto unexplained, in the case of the surface tension of such complex fluids by segregating the individual contributions of each component of the colloidal system.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    S.K. Das, S.U.S. Choi, H.E. Patel, Heat Transfer Eng. 27, 3 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    D.H. Kumar, H.E. Patel, V.R.R. Kumar, T. Sundararajan, T. Pradeep, S.K. Das, Phys. Rev. Lett. 93, 144301 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    K. Khanafer, K. Vafai, Int. J. Heat Mass Transfer 54, 4410 (2011)CrossRefGoogle Scholar
  4. 4.
    M.H.U. Bhuiyan, R. Saidur, R.M. Mostafizur, I.M. Mahbubul, M.A. Amalina, Int. Commun. Heat Mass Transfer 65, 82 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Chinnam, D.K. Das, R.S. Vajjha, J.R. Satti, Int. J. Therm. Sci. 98, 68 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Tanvir, L. Qiao, Nanoscale Res. Lett. 7, 226 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    S. Vafaei, D. Wen, T. Borca-Tasciuc, Langmuir 27, 2211 (2011)CrossRefGoogle Scholar
  8. 8.
    Ruey-Hung, Chen, Phuoc Tran X., Martello Donald, Int. J. Heat Mass Transfer 54, 2459 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Lim, H. Horiuchi, A.D. Nikolov, D. Wasan, Langmuir 31, 5827 (2015)CrossRefGoogle Scholar
  10. 10.
    P.R. Waghmare, S.K. Mitra, Langmuir 26, 17082 (2010)CrossRefGoogle Scholar
  11. 11.
    J.T. Cieslinski, K.A. Krygier, Exp. Therm. Fluid Sci. 59, 258 (2014)CrossRefGoogle Scholar
  12. 12.
    S.L. Song, J.H. Lee, S.H. Chang, Exp. Therm. Fluid Sci. 52, 12 (2014)CrossRefGoogle Scholar
  13. 13.
    M.N. Pantzali, A.G. Kanaris, K.D. Antoniadis, A.A. Mouza, S.V. Paras, Int. J. Heat Fluid Flow 30, 691 (2009)CrossRefGoogle Scholar
  14. 14.
    H. Peng, G. Ding, H. Hu, Exp. Therm. Fluid Sci. 35, 960 (2011)CrossRefGoogle Scholar
  15. 15.
    S.G. Kandlikar, Int. J. Therm. Sci. 49, 1073 (2010)CrossRefGoogle Scholar
  16. 16.
    S.E. Feller, R.W. Pastor, J. Chem. Phys. 111, 1281 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    A.R. Shah, R. Banerjee, Soft Matter 8, 11911 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    A. Stocco, W. Drenckhan, E. Rio, D. Langevin, B.P. Binks, Soft Matter 5, 2215 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    S.S. Khaleduzzaman, I.M. Mahbubul, I.M. Shahrul, R. Saidur, Int. Commun. Heat Mass Transfer 49, 110 (2013)CrossRefGoogle Scholar
  20. 20.
    R.G. Chaudhuri, S. Paria, J. Colloid Interface Sci. 434, 141 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Huminic, G. Huminic, C. Fleaca, F. Dumitrache, I. Morjan, Powder Technol 284, 78 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Vafaei, A. Purkayastha, A. Jain, G. Ramanath, T. Borca-Tasciuc, Nanotechnology 20, 185702 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    H. Ma, M. Luo, L.L. Dai, Phys. Chem. Chem. Phys. 10, 2207 (2008)CrossRefGoogle Scholar
  24. 24.
    J. Aguiar, P. Carpena, J.A. Molina-Bolivar, C.C. Ruiz, J. Colloid Interface Sci. 258, 116 (2003)CrossRefGoogle Scholar
  25. 25.
    A.J. Prosser, E.I. Franses, Colloids Surf. A: Physicochem. Eng. Asp. 178, 1 (2001)CrossRefGoogle Scholar
  26. 26.
    J. Eastoe, J.S. Dalton, Adv. Colloid Interface Sci. 85, 103 (2000)CrossRefGoogle Scholar
  27. 27.
    R. Kumar, D. Milanova, Appl. Phys. Lett. 94, 073107 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    A. Maestro, E. Guzman, E. Santini, F. Ravera, L. Liggieri, F. Ortega, R.G. Rubio, Soft Matter 8, 837 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    C. Zeng, H. Bissig, A.D. Dinsmore, Solid State Commun. 139, 547 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    H.S. Wi, S. Cingarapu, K.J. Klabunde, B.M. Law, Langmuir 27, 9979 (2011)CrossRefGoogle Scholar
  31. 31.
    S.P. McBride, B.M. Law, Phys. Rev. Lett. 109, 196101 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    G. Lu, Y.Y. Duan, X.D. Wang, J. Nanopart. Res. 16, 2564 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    V. Garbin, J.C. Crocker, K.J. Stebe, J. Colloid Interface Sci. 387, 1 (2012)CrossRefGoogle Scholar
  34. 34.
    W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, 1989) ISBN: 0 521 34188 4Google Scholar
  35. 35.
    P. Ghosh, Colloid and Interface Science (PHI Learning, New Delhi, 2009)Google Scholar
  36. 36.
    V. Garbin, I. Jenkins, T. Sinno, J.C. Crocker, K.J. Stebe, Phys. Rev. Lett. 114, 108301 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    A.J.B. Milne, J.A.W. Elliott, A. Amirfazli, Phys. Chem. Chem. Phys 17, 5574 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • A. R. Harikrishnan
    • 1
  • Purbarun Dhar
    • 2
  • Prabhat K. Agnihotri
    • 2
  • Sateesh Gedupudi
    • 1
  • Sarit K. Das
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Mechanical EngineeringIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations