Stability of a gravity-driven thin electrolyte film flowing over a heated substrate

Regular Article

Abstract.

The stability of a thin electrolyte liquid film driven by gravity over a vertical substrate is presented. A film thickness evolution equation is derived and solved numerically. The substrate is non-uniformly heated from below which is modeled by imposing a temperature profile at the liquid-solid interface. The electrohydrodynamics is included in the model with Maxwell’s stress tensor. The governing flow and energy equations are simplified using the lubrication approximation. The Poisson-Boltzmann equation with Debye-Hückel approximation is used for the potential which is generated inside the film due to a charged layer at the liquid-solid interface. The positive temperature gradient at the substrate leads to the formation of a thermocapillary ridge due to an opposing Marangoni stress. This thermocapillary ridge becomes unstable beyond critical parameters related to Marangoni stress and convective energy loss at the free surface. The electroosmotic flow has no effect on the base profile of the film, but enhances its instability. A parameter space is presented delineating the stable and unstable regimes for the film dynamics.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    L. Fu, J. Lin, R. Yang, J. Colloid Interface Sci. 258, 266 (2002)CrossRefGoogle Scholar
  2. 2.
    A. Brask, G. Goranović, H. Bruus, Tech. Proc. Nanotechnol. 1, 190 (2003)Google Scholar
  3. 3.
    B.J. Kirby, E.F. Hasselbrink, Electrophoresis 25, 187 (2004)CrossRefGoogle Scholar
  4. 4.
    D.R. Reyes, D. Iossifidis, P. Auroux, A. Manz, Anal. Chem. 74, 2623 (2002)CrossRefGoogle Scholar
  5. 5.
    J. Melcher, G. Taylor, Annu. Rev. Fluid Mech. 1, 111 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    C.L. Brucham, D.A. Saville, J. Fluid Mech. 452, 163 (2002)ADSGoogle Scholar
  8. 8.
    J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    T.B. Benjamin, J. Fluid Mech. 2, 554 (1957)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    S.H. Davis, Annu. Rev. Fluid Mech. 19, 403 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    B. Ramaswamy, S. Krishnamoorthy, S.W. Joo, J. Comput. Phys. 131, 70 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    V. Ajaev, J. Colloid Interface Sci. 280, 165 (2004)CrossRefGoogle Scholar
  14. 14.
    N. Tiwari, J.M. Davis, Phys. Fluids 21, 022105 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    L. Ren, W. Qu, D. Li, Int. J. Heat Mass Transfer 44, 3125 (2001)CrossRefGoogle Scholar
  16. 16.
    Y. Gu, D. Li, J. Colloid Interface Sci. 226, 328 (2000)CrossRefGoogle Scholar
  17. 17.
    J.S.H. Lee, D. Li, Microfluid. Nanofluid. 2, 361 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Joo, J. Mech. Sci. Technol. 22, 382 (2007)CrossRefGoogle Scholar
  19. 19.
    S. Joo, Microfluid. Nanofluid. 5, 417 (2008)CrossRefGoogle Scholar
  20. 20.
    I.M.R. Sadiq, S.W. Joo, Micrograv. Sci. Technol. 21, 331 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    B. Ray, P.D.S. Reddy, D. Bandyopadhyay, S.W. Joo, A. Sharma, S. Qian, G. Biswas, Electrophoresis 32, 3257 (2011)CrossRefGoogle Scholar
  22. 22.
    B. Ray, D. Bandyopadhyay, A. Sharma, S.W. Joo, S. Qian, G. Biswas, Microfluid. Nanofluid. 15, 19 (2013)CrossRefGoogle Scholar
  23. 23.
    B. Ray, P.D.S. Reddy, D. Bandyopadhyay, S.W. Joo, A. Sharma, S. Qian, G. Biswas, Theor. Comput. Fluid Dyn. 26, 311 (2012)CrossRefGoogle Scholar
  24. 24.
    O.A. Kabov, in Proceedings of the 1st Russian National Conference on Heat Transfer, Vol. 6 (1994) p. 90Google Scholar
  25. 25.
    N. Tiwari, Z. Mester, J.M. Davis, Phys. Rev. E 76, 056306 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    J.S. Newman, K.E. Thomas-Alyea, Electrochemical Systems (John Wiley and Sons, Hoboken, NJ, 2004)Google Scholar
  27. 27.
    B. Fornberg, Math. Comput. 51, 699 (1988)CrossRefGoogle Scholar
  28. 28.
    N. Tiwari, A. Awasthi, J.M. Davis, Phys. Fluids 26, 042105 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    B.J. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices (Cambridge University Press, New York, 2010)Google Scholar
  30. 30.
    A.M. Frank, O.A. Kabov, Phys. Fluids 18, 032107 (2006)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Tara Chand Kumawat
    • 1
  • Ajit Vikram
    • 1
  • Naveen Tiwari
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations