Generalization of the Ericksen-Leslie theory

Regular Article

Abstract.

We generalize the Ericksen-Leslie theory for the dynamics of nematic liquid crystals by including the director-density coupling energy \(f_{ddc}\). It corresponds to the cost in energy due to the interaction of spatially varying mass density \(\rho\) and the liquid crystal director \( \mathbf{n}\). A striking confirmation of the theory is achieved by confronting it with experimental data on acoustical Fréedericksz transition.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    J.V. Selinger, M.S. Spector, V.A. Greanya, B.T. Weslowski, D.K. Shenoy, R. Shashidhar, Phys. Rev. E 66, 051708 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    C. Vitoriano, Phys. Rev. E 90, 032502 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993)Google Scholar
  4. 4.
    V.A. Greanya, M.S. Spector, J.V. Selinger, B.T. Weslowski, R. Shashidhar, J. Appl. Phys. 94, 7571 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    A.P. Malanoski, V.A. Greanya, B.T. Weslowski, M.S. Spector, J.V. Selinger, R. Shashidhar, Phys. Rev. E 69, 021705 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    V.A. Greanya, A.P. Malanoski, B.T. Weslowski, M.S. Spector, J.V. Selinger, Liq. Cryst. 32, 933 (2005)CrossRefGoogle Scholar
  7. 7.
    C. Sátiro, C. Vitoriano, Phys. Rev. E 84, 041702 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    C. Sátiro, C. Vitoriano, Phys. Rev. E 86, 011701 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    C. Vitoriano, C. Sátiro, Phys. Rev. E 86, 061702 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    C. Vitoriano, Phys. Rev. E 88, 032501 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    C. Vitoriano, C. Sátiro, Phys. Rev. E 93, 022702 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    E.G. Virga, Phys. Rev. E 80, 031705 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    G. De Matteis, E.G. Virga, Phys. Rev. E 83, 011703 (2011)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    G. De Matteis, Mol. Cryst. Liq. Cryst. 549, 43 (2011)CrossRefGoogle Scholar
  15. 15.
    G. De Matteis, Acta Appl. Math. 122, 205 (2012)MathSciNetGoogle Scholar
  16. 16.
    P. Biscari, A. DiCarlo, S.S. Turzi, Soft Matter 10, 8296 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    S.S. Turzi, Eur. J. Appl. Math. 26, 93 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Y.J. Kim, J.S. Patel, Appl. Phys. Lett. 75, 1985 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    J.L. Ericksen, Arch. Ration. Mech. Anal. 4, 231 (1960)CrossRefGoogle Scholar
  20. 20.
    J.L. Ericksen, Phys. Fluids 9, 1205 (1966)ADSCrossRefGoogle Scholar
  21. 21.
    F.M. Leslie, Q. J. Mech. Appl. Math. 19, 357 (1966)CrossRefGoogle Scholar
  22. 22.
    F.M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968)CrossRefGoogle Scholar
  23. 23.
    O. Parodi, J. Phys. (Paris) 31, 581 (1970)CrossRefGoogle Scholar
  24. 24.
    D. Forster, T.C. Lubensky, P.C. Martin, J. Swift, P.S. Pershan, Phys. Rev. Lett. 26, 1016 (1971)ADSCrossRefGoogle Scholar
  25. 25.
    H.-W. Huang, Phys. Rev. Lett. 26, 1525 (1971)ADSCrossRefGoogle Scholar
  26. 26.
    O.A. Kapustina, Pis'ma Zh. Éksp. Teor. Fiz. 82, 664 (2005) (JETP Lett. 82Google Scholar
  27. 27.
    O.A. Kapustina, Akust. Zh. 52, 485 (2006) (Acoust. Phys. 52Google Scholar
  28. 28.
    O.A. Kapustina, Akust. Zh. 54, 219 (2008) (Acoust. Phys. 54Google Scholar
  29. 29.
    E.N. Kozhevnikov, Akust. Zh. 42, 800 (1996) (Acoust. Phys. 42Google Scholar
  30. 30.
    E.N. Kozhevnikov, N.G. Dolmatova, Vestnik. Samar. Gos. Tech. Univ. No. 2 (4), 142 (1997)Google Scholar
  31. 31.
    M.E. Mullen, B. Lüthi, M.J. Stephen, Phys. Rev. Lett. 28, 799 (1972)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Unidade Acadêmica do Cabo de Santo AgostinhoUniversidade Federal Rural de PernambucoPonte dos Carvalhos, Cabo de Santo Agostinho, PernambucoBrazil

Personalised recommendations