Exploring the physics of sand drawings: The role of craters, furrows and piles

Regular Article

Abstract

Few years ago an article addressing the physics behind abstract paintings was published by Herczyński et al. (Phys. Today 64, 31 (2011) issue No. 6). The authors aimed to understand how artists like Jackson Pollock manipulated paints to create pieces of art where the theory of fluid dynamics had a clear and perceivable role. Scaling laws were found to explain the plasticity observed in the artists's traces that we admire in worldwide museums. Because sand drawings are not only wonderful artistic expressions but also intangible cultural heritages of humanity, we wonder if they could be analyzed in a similar fashion. Our goal is to explore the physics behind the formation of such drawings. In order to do so, we carry out experimental studies on the formation of sand cavities, furrows and piles, which individually or interconnected, give rise to artistic patterns. Moreover, in order to manipulate such three observables, some control parameters are needed. Altogether, they conform into simple exponential and power laws that collapse when a scaling is performed.

Graphical abstract

Keywords

Flowing Matter: Granular Matter 

References

  1. 1.
    L.P. Hurlburt, Rev. Bellas Art. 25, 26 (1976)Google Scholar
  2. 2.
    Lord Rayleigh, Proc. London Math. Soc. 14, 170 (1883)MathSciNetGoogle Scholar
  3. 3.
    G.I. Taylor, Proc. R. Soc. London A 201, 192 (1950)ADSCrossRefGoogle Scholar
  4. 4.
    E.M. de la Calleja, S. Zetina, R. Zenit, Phys. Fluids 26, 091102 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    S. Zetina, F.A. Godinez, R. Zenit, PLoS ONE 10, e0126135 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Herczyński, C. Cernuschi, L. Mahadevan, Phys. Today 64, 31 (2011) issue No. 6CrossRefGoogle Scholar
  7. 7.
    P.K. Haff, J. Fluid Mech. 134, 401 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    R. Rioboo, C. Bauthier, J. Conti, M. Voue, J. De Coninck, Exp. Fluids 35, 648 (2003)CrossRefGoogle Scholar
  9. 9.
    L. Xu, W.W. Zhang, S.R. Nagel, Phys. Rev. Lett. 94, 184505 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    A.L. Yarin, Annu. Rev. Fluid Mech. 38, 159 (2006)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S.T. Thoroddsen, K. Takehara, Phys. Fluids 12, 1265 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    K. Simonova, available at http://simonova.tv/
  13. 13.
    A. Amador, available at http://www.andresamadorarts.com/
  14. 14.
    M. Ascher, Hist. Math. 15, 201 (1988)CrossRefGoogle Scholar
  15. 15.
    M. Ascher, Ethnomathematics: A Multicultural View of Mathematical Ideas (Brooks/Cole, Pacific Grove, 1990)Google Scholar
  16. 16.
    J. Green, Drawn from the Ground: Sound, Sign and Inscription in Central Australian Sand Stories (Cambridge University Press, Padstow, 2014)Google Scholar
  17. 17.
    D. Chavey, Cult. Sci. 21, 191 (2010)Google Scholar
  18. 18.
    P. Gerdes, Drawings from Angola: Living Mathematics (Lulu.com, 2007)Google Scholar
  19. 19.
    G. Siromoney, R. Siromoney, K. Krithivasan, Comput. Graph. Image Process. 1, 284 (1972)CrossRefGoogle Scholar
  20. 20.
    T. Robinson, Forma 22, 55 (2007)MathSciNetGoogle Scholar
  21. 21.
    R. Soller, S.A. Koehler, EPL 80, 14004 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    M.B. Stone, R. Barry, D.P. Bernstein, M.D. Pelc, Y.K. Tsui, P. Schiffer, Phys. Rev. E 70, 041301 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    V.K. Horvath, I.M. Janosi, P.J. Vella, Phys. Rev. E 54, 2005 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    E. Kolb, P. Cixous, N. Gaudouen, T. Darnige, Phys. Rev. E 87, 032207 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    J. Geng, E. Longhi, R.P. Behringer, D.W. Howell, Phys. Rev. E 64, 060301 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    L. Vanel, D. Howell, D. Clark, R.P. Behringer, E. Clement, Phys. Rev. E 60, R5040 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    J. Ai, J.Y. Ooi, J.F. Chen, J.M. Rotter, Z. Zhong, Mech. Mater 66, 160 (2013)CrossRefGoogle Scholar
  28. 28.
    R. Albert, M.A. Pfeifer, A.L. Barabasi, P. Schiffer, Phys. Rev. Lett. 82, 205 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    M.B. Stone, D.P. Bernstein, R. Barry, M.D. Pelc, Y.K. Tsui, P. Schiffer, Nature 427, 503 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    M.B. Stone, R. Barry, D.P. Bernstein, M.D. Pelc, Y.K. Tsui, P. Schiffer, Phys. Rev. E 70, 041301 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    M. Schröter, S. Nägle, C. Radin, H.L. Swinney, EPL 78, 44004 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Z. Peng, X. Xu, K. Lu, M. Hou, Phys. Rev. E 80, 021301 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    A.W. Roberts, C.M. Wensrich, Chem. Eng. Sci. 57, 295 (2002)CrossRefGoogle Scholar
  34. 34.
    V.D. Nguyen, C. Cogné, M. Guessasma, E. Bellenger, J. Fortin, Appl. Therm. Eng. 29, 1846 (2009)CrossRefGoogle Scholar
  35. 35.
    G. Nick, P.B. Umbanhowar, D.I. Goldman, Phys. Rev. Lett. 105, 12 (2010)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jorge González-Gutiérrez
    • 1
  • J. C. Ruiz-Suárez
    • 1
  1. 1.CINVESTAV-Monterrey, PIITNuevo LeónMexico

Personalised recommendations