Skip to main content
Log in

Exploring the physics of sand drawings: The role of craters, furrows and piles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Few years ago an article addressing the physics behind abstract paintings was published by Herczyński et al. (Phys. Today 64, 31 (2011) issue No. 6). The authors aimed to understand how artists like Jackson Pollock manipulated paints to create pieces of art where the theory of fluid dynamics had a clear and perceivable role. Scaling laws were found to explain the plasticity observed in the artists's traces that we admire in worldwide museums. Because sand drawings are not only wonderful artistic expressions but also intangible cultural heritages of humanity, we wonder if they could be analyzed in a similar fashion. Our goal is to explore the physics behind the formation of such drawings. In order to do so, we carry out experimental studies on the formation of sand cavities, furrows and piles, which individually or interconnected, give rise to artistic patterns. Moreover, in order to manipulate such three observables, some control parameters are needed. Altogether, they conform into simple exponential and power laws that collapse when a scaling is performed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.P. Hurlburt, Rev. Bellas Art. 25, 26 (1976)

    Google Scholar 

  2. Lord Rayleigh, Proc. London Math. Soc. 14, 170 (1883)

    MathSciNet  Google Scholar 

  3. G.I. Taylor, Proc. R. Soc. London A 201, 192 (1950)

    Article  ADS  Google Scholar 

  4. E.M. de la Calleja, S. Zetina, R. Zenit, Phys. Fluids 26, 091102 (2014)

    Article  ADS  Google Scholar 

  5. S. Zetina, F.A. Godinez, R. Zenit, PLoS ONE 10, e0126135 (2015)

    Article  Google Scholar 

  6. A. Herczyński, C. Cernuschi, L. Mahadevan, Phys. Today 64, 31 (2011) issue No. 6

    Article  Google Scholar 

  7. P.K. Haff, J. Fluid Mech. 134, 401 (1983)

    Article  ADS  Google Scholar 

  8. R. Rioboo, C. Bauthier, J. Conti, M. Voue, J. De Coninck, Exp. Fluids 35, 648 (2003)

    Article  Google Scholar 

  9. L. Xu, W.W. Zhang, S.R. Nagel, Phys. Rev. Lett. 94, 184505 (2005)

    Article  ADS  Google Scholar 

  10. A.L. Yarin, Annu. Rev. Fluid Mech. 38, 159 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. S.T. Thoroddsen, K. Takehara, Phys. Fluids 12, 1265 (2000)

    Article  ADS  Google Scholar 

  12. K. Simonova, available at http://simonova.tv/

  13. A. Amador, available at http://www.andresamadorarts.com/

  14. M. Ascher, Hist. Math. 15, 201 (1988)

    Article  Google Scholar 

  15. M. Ascher, Ethnomathematics: A Multicultural View of Mathematical Ideas (Brooks/Cole, Pacific Grove, 1990)

  16. J. Green, Drawn from the Ground: Sound, Sign and Inscription in Central Australian Sand Stories (Cambridge University Press, Padstow, 2014)

  17. D. Chavey, Cult. Sci. 21, 191 (2010)

    Google Scholar 

  18. P. Gerdes, Drawings from Angola: Living Mathematics (Lulu.com, 2007)

  19. G. Siromoney, R. Siromoney, K. Krithivasan, Comput. Graph. Image Process. 1, 284 (1972)

    Article  Google Scholar 

  20. T. Robinson, Forma 22, 55 (2007)

    MathSciNet  Google Scholar 

  21. R. Soller, S.A. Koehler, EPL 80, 14004 (2007)

    Article  ADS  Google Scholar 

  22. M.B. Stone, R. Barry, D.P. Bernstein, M.D. Pelc, Y.K. Tsui, P. Schiffer, Phys. Rev. E 70, 041301 (2004)

    Article  ADS  Google Scholar 

  23. V.K. Horvath, I.M. Janosi, P.J. Vella, Phys. Rev. E 54, 2005 (1996)

    Article  ADS  Google Scholar 

  24. E. Kolb, P. Cixous, N. Gaudouen, T. Darnige, Phys. Rev. E 87, 032207 (2013)

    Article  ADS  Google Scholar 

  25. J. Geng, E. Longhi, R.P. Behringer, D.W. Howell, Phys. Rev. E 64, 060301 (2001)

    Article  ADS  Google Scholar 

  26. L. Vanel, D. Howell, D. Clark, R.P. Behringer, E. Clement, Phys. Rev. E 60, R5040 (1999)

    Article  ADS  Google Scholar 

  27. J. Ai, J.Y. Ooi, J.F. Chen, J.M. Rotter, Z. Zhong, Mech. Mater 66, 160 (2013)

    Article  Google Scholar 

  28. R. Albert, M.A. Pfeifer, A.L. Barabasi, P. Schiffer, Phys. Rev. Lett. 82, 205 (1999)

    Article  ADS  Google Scholar 

  29. M.B. Stone, D.P. Bernstein, R. Barry, M.D. Pelc, Y.K. Tsui, P. Schiffer, Nature 427, 503 (2004)

    Article  ADS  Google Scholar 

  30. M.B. Stone, R. Barry, D.P. Bernstein, M.D. Pelc, Y.K. Tsui, P. Schiffer, Phys. Rev. E 70, 041301 (2004)

    Article  ADS  Google Scholar 

  31. M. Schröter, S. Nägle, C. Radin, H.L. Swinney, EPL 78, 44004 (2007)

    Article  ADS  Google Scholar 

  32. Z. Peng, X. Xu, K. Lu, M. Hou, Phys. Rev. E 80, 021301 (2009)

    Article  ADS  Google Scholar 

  33. A.W. Roberts, C.M. Wensrich, Chem. Eng. Sci. 57, 295 (2002)

    Article  Google Scholar 

  34. V.D. Nguyen, C. Cogné, M. Guessasma, E. Bellenger, J. Fortin, Appl. Therm. Eng. 29, 1846 (2009)

    Article  Google Scholar 

  35. G. Nick, P.B. Umbanhowar, D.I. Goldman, Phys. Rev. Lett. 105, 12 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Ruiz-Suárez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Gutiérrez, J., Ruiz-Suárez, J.C. Exploring the physics of sand drawings: The role of craters, furrows and piles. Eur. Phys. J. E 40, 45 (2017). https://doi.org/10.1140/epje/i2017-11534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11534-4

Keywords

Navigation