Polymer chain collapse induced by many-body dipole correlations

  • Yu. A. Budkov
  • N. N. Kalikin
  • A. L. Kolesnikov
Regular Article

Abstract.

We present a simple analytical theory of a flexible polymer chain dissolved in a good solvent, carrying permanent freely oriented dipoles on the monomers. We take into account the dipole correlations within the random phase approximation (RPA), as well as a dielectric heterogeneity in the internal polymer volume relative to the bulk solution. We demonstrate that the dipole correlations of monomers can be taken into account as pairwise ones only when the polymer chain is in a coil conformation. In this case the dipole correlations manifest themselves through the Keesom interactions of the permanent dipoles. On the other hand, the dielectric heterogeneity effect (dielectric mismatch effect) leads to the effective interaction between the monomers of the polymeric coil. Both of these effects can be taken into account by renormalizing the second virial coefficient of the monomer-monomer volume interactions. We establish that in the case when the solvent dielectric permittivity exceeds the dielectric permittivity of the polymeric material, the dielectric mismatch effect competes with the dipole attractive interactions, leading to polymer coil expansion. In the opposite case, both the dielectric mismatch effect and the dipole attractive interaction lead to the polymer coil collapse. We analyse the coil-globule transition caused by the dipole correlations of monomers within the many-body theory. We demonstrate that accounting for the dipole correlations higher than the pairwise ones smooths this pure electrostatics driven coil-globule transition of the polymer chain.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    D.L. Tomasko, H. Li et al., Ind. Eng. Chem. 42, 6431 (2003)CrossRefGoogle Scholar
  2. 2.
    S.G. Kazarian, Polym. Sci., Ser. C 42, 78 (2000)Google Scholar
  3. 3.
    Kiran Erdogan, J. Supercrit. Fluids 110, 126 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Kost, R. Langer, Adv. Drug Deliv. Rev. 46, 125 (2001)CrossRefGoogle Scholar
  5. 5.
    Priya Bawa, Viness Pillay, Yahya E. Choonara, Lisa C. du Toit, Biomed. Mater. 4, 022001 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    S.D. Fitzpatrick, E.F. Lindsay, A. Thakur et al., Expert Rev. Med. Dev. 9, 339 (2012)CrossRefGoogle Scholar
  7. 7.
    P.G. de Gennes, J. Phys. (Paris) Lett. 36, L-55 (1975)CrossRefGoogle Scholar
  8. 8.
    A.Yu. Grosberg, D.V. Kuznetsov, Macromolecules 25, 1970 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    T.M. Birshtein, V.A. Pryamitsyn, Macromolecules 24, 1554 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Moore, J. Phys. A: Math. Gen. 10, 305 (1977)ADSCrossRefGoogle Scholar
  11. 11.
    I.C. Sanchez, Macromolecules 12, 980 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    I.M. Lifshitz, Sov. Phys. JETP 28, 1280 (1969)ADSGoogle Scholar
  13. 13.
    I.M. Lifshitz, A.Yu. Grosberg, A.R. Khohlov, Rev. Mod. Phys. 50, 683 (1978)ADSCrossRefGoogle Scholar
  14. 14.
    M. Muthukumar, J. Chem. Phys. 81, 6272 (1984)ADSCrossRefGoogle Scholar
  15. 15.
    A. Dua, B.J. Cherayil, J. Chem. Phys. 111, 3274 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    A. Dua, T.A. Vilgis, EPL 71, 49 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    D.S. Simmons, I.C. Sanchez, Macromolecules 46, 4691 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Akihiko Matsoyanla, Fumihiko Tanaka, J. Chem. Phys. 94, 781 (1991)CrossRefGoogle Scholar
  19. 19.
    J. Heyda, A. Muzdalo, J. Dzubiella, Macromolecules 46, 1231 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    M.V. Tamm, I.Ya. Erukhimovich, Polym. Sci., Ser. A 44, 196 (2002)Google Scholar
  21. 21.
    Yu.A. Budkov, A.L. Kolesnikov, N. Georgi, M.G. Kiselev, J. Chem. Phys. 141, 014902 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Yu.A. Budkov, I.I. Vyalov, A.L. Kolesnikov, N. Georgi, G.N. Chuev, M.G. Kiselev, J. Chem. Phys. 141, 204904 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Yu.A. Budkov, A.L. Kolesnikov, N. Georgi, M.G. Kiselev, EPL 109, 36005 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Yu.A. Budkov, A.L. Kolesnikov, N.N. Kalikin, M.G. Kiselev, EPL 114, 46004 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Sergey M. Melʼnikov, Malek O. Khan, Bjorn Lindman, Bo Jonsson, J. Am. Chem. Soc. 121, 1130 (1999)CrossRefGoogle Scholar
  26. 26.
    Luke J. Kirwan, Georg Papastavrou, Michal Borkovec, Nano Lett. 4, 149 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Anvy Moly Tom, Satyavani Vemparala, R. Rajesh, Nikolai V. Brilliantov, Phys. Rev. Lett. 117, 147801 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    A.A. Gavrilov, A.V. Chertovich, E.Yu. Kramarenko, Macromolecules 49, 1103 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    R.R. Netz, J. Phys. Chem. B 107, 8208 (2003)CrossRefGoogle Scholar
  30. 30.
    R.R. Netz, Phys. Rev. Lett. 90, 128104 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    G. Manning, Q. Rev. Biophys. 11, 179 (1978)CrossRefGoogle Scholar
  32. 32.
    N.V. Brilliantov, D.V. Kuznetzov, R. Klein, Phys. Rev. Lett. 81, 1433 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Levin, Rep. Prog. Phys. 65, 1577 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    N.V. Brilliantov, Phys. Rev. E 48, 4536 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    Ramin Golestanian, Mehran Kardar, Tanniemola B. Liverpool, Phys. Rev. Lett. 82, 4456 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    J. Kirkwood, J.B. Shumaker, Proc. Natl. Acad. Sci. U.S.A. 38, 855 (1952)ADSCrossRefGoogle Scholar
  37. 37.
    Natasa Adzic, Rudolf Podgornik, Eur. Phys. J. E 37, 49 (2014)CrossRefGoogle Scholar
  38. 38.
    Yu.A. Budkov, A.I. Frolov, M.G. Kiselev, N.V. Brilliantov, J. Chem. Phys. 139, 194901 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Yu.A. Budkov, A.L. Kolesnikov, N. Georgi, E.A. Nogovitsyn, M.G. Kiselev, J. Chem. Phys. 142, 174901 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Pengfei Zhang, Nayef M. Alsaifi, Jianzhong Wu, Zhen-Gang Wang, Macromolecules 49, 9720 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    Kevin Shen, Zhen-Gang Wang, J. Chem. Phys. 146, 084901 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    Arindam Kundagrami, M. Muthukumar, Macromolecules 43, 2574 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    N.V. Brilliantov, Contrib. Plasma Phys. 38, 489 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    Anvy Moly Tom, Satyavani Vemparala, R. Rajeshab, Nikolai V. Brilliantov, Soft Matter 13, 1862 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    H. Schiessel, P. Pincus, Macromolecules 31, 7953 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    Prasanta Kundu, Arti Dua, J. Stat. Mech. 2014, 07023 (2014)Google Scholar
  47. 47.
    A.G. Cherstvy, J. Phys. Chem. B 114, 5241 (2010)CrossRefGoogle Scholar
  48. 48.
    Rajeev Kumar, Glenn H. Fredrickson, J. Chem. Phys. 131, 104901 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    Yu.A. Budkov, A.L. Kolesnikov, Eur. Phys. J. E 39, 110 (2016)CrossRefGoogle Scholar
  50. 50.
    Rudi Podgornik, Phys. Rev. E 70, 031801 (2004)CrossRefGoogle Scholar
  51. 51.
    David S. Dean, Rudolf Podgornik, J. Chem. Phys. 136, 154905 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    Rajeev Kumar, Bobby G. Sumpter, M. Muthukumar, Macromolecules 47, 6491 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    Bing-Sui Lu, Ali Naji, Rudolf Podgornik, J. Chem. Phys. 142, 214904 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    Jonathan M. Martin, Wei Li, Kris T. Delaney, Glenn H. Fredrickson, J. Chem. Phys. 145, 154104 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    Jyoti P. Mahalik, Bobby G. Sumpter, Rajeev Kumar, Macromolecules 49, 7096 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    E. Gurovich, Macromolecules 27, 7339 (1994)ADSCrossRefGoogle Scholar
  57. 57.
    E. Gurovich, Macromolecules 28, 6078 (1994)ADSCrossRefGoogle Scholar
  58. 58.
    Yu.A. Budkov, A.L. Kolesnikov, M.G. Kiselev, J. Chem. Phys. 143, 201102 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    P. Flory, Statistical Mechanics of Chain Molecules (Wiley-Interscience, New York, 1969)Google Scholar
  60. 60.
    M. Fixman, J. Chem. Phys. 36, 306 (1962)ADSCrossRefGoogle Scholar
  61. 61.
    Yu.A. Budkov, A.L. Kolesnikov, J. Stat. Mech. 2016, 103211 (2016)CrossRefGoogle Scholar
  62. 62.
    A.Yu. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, Woodbury, NY, 1994)Google Scholar
  63. 63.
    Alexei R. Khokhlov, Elena Yu. Kramarenko, Macromol. Theory Simul. 3, 45 (1994)CrossRefGoogle Scholar
  64. 64.
    Alexei R. Khokhlov, Elena Yu. Kramarenko, Macromolecules 29, 681 (1996)ADSCrossRefGoogle Scholar
  65. 65.
    Elena Yu. Kramarenko, Alexei R. Khokhlov, Kenichi Yoshikawa, Macromol. Theory Simul. 9, 249 (2000)CrossRefGoogle Scholar
  66. 66.
    Samat B. Moldakarimov, Elena Yu. Kramarenko, Alexei R. Khokhlov, Sarkyt E. Kudaibergenov, Macromol. Theory Simul. 10, 780 (2001)CrossRefGoogle Scholar
  67. 67.
    E.Yu. Kramarenko, I.Ya. Erukhimovich, A.R. Khokhlov, Macromol. Theory Simul. 11, 462 (2002)CrossRefGoogle Scholar
  68. 68.
    W.H. Stockmayer, J. Chem. Phys. 9, 398 (1941)ADSCrossRefGoogle Scholar
  69. 69.
    Jacob N. Israelachvili, Intermolecular and Surface Forces (Academic Press, 2011)Google Scholar
  70. 70.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, Vol. 8, A Course of Theoretical Physics (Pergamon Press, Oxford, UK, 1960)Google Scholar
  71. 71.
    J.-L. Barrat, J.-P. Hansen, Basic Concepts for Simple and Complex Liquids (University Press, Cambridge, 2003)Google Scholar
  72. 72.
    A. Abrashkin, D. Andelman, H. Orland, Phys. Rev. Lett. 99, 077801 (2007)ADSCrossRefGoogle Scholar
  73. 73.
    A. Levy, D. Andelman, H. Orland, Phys. Rev. Lett. 108, 227801 (2012)ADSCrossRefGoogle Scholar
  74. 74.
    Z.-G. Wang, Phys. Rev. E 81, 021501 (2010)ADSCrossRefGoogle Scholar
  75. 75.
    R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962)ADSCrossRefGoogle Scholar
  76. 76.
    Yu.A. Budkov, A.L. Kolesnikov, M.G. Kiselev, EPL 111, 28002 (2015)ADSCrossRefGoogle Scholar
  77. 77.
    Yu.A. Budkov, A.L. Kolesnikov, M.G. Kiselev, J. Chem. Phys. 144, 184703 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yu. A. Budkov
    • 1
  • N. N. Kalikin
    • 2
  • A. L. Kolesnikov
    • 3
  1. 1.National Research University Higher School of EconomicsDepartment of Applied MathematicsMoscowRussia
  2. 2.Ivanovo State University, Department of PhysicsIvanovoRussia
  3. 3.Institut für Nichtklassische Chemie e.V.Universität LeipzigLeipzigGermany

Personalised recommendations