Skip to main content

Perils of ad hoc approximations for the activity function of chemically powered colloids

Abstract.

Colloids can achieve motility by promoting at their surfaces chemical reactions in the surrounding solution. A well-studied case is that of self-phoresis, in which motility arises due to the spatial inhomogeneities in the chemical composition of the solution and the distinct interactions of the solvent molecules and of the reaction products with the colloid. For simple models of such chemically active colloids, the steady-state motion in an unbounded solution can be derived analytically in closed form. In contrast, for such chemically active particles moving in the vicinity of walls, the derivation of closed-form and physically intuitive solutions of the equations governing their dynamics turns out to be a severe challenge even for simple models. Therefore, recent studies of these phenomena have employed numerical methods as well as approximate analytical approaches based on multipolar expansions. We discuss and clarify certain conceptual aspects concerning the latter type of approach, which arise due to ad hoc truncations of the underlying so-called activity function, which describes the distribution of chemical reactions across the surface of the particle.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)

    Article  ADS  Google Scholar 

  2. Y. Hong, D. Velegol, N. Chaturvedi, A. Sen, Phys. Chem. Chem. Phys. 12, 1423 (2010)

    Article  Google Scholar 

  3. S. Ebbens, M.H. Tu, J.R. Howse, R. Golestanian, Phys. Rev. E 85, 020401 (2012)

    Article  ADS  Google Scholar 

  4. T.C. Lee, M. Alarcón-Correa, C. Miksch, K. Hahn, J.G. Gibbs, P. Fischer, Nano Lett. 14, 2407 (2014)

    Article  ADS  Google Scholar 

  5. L. Baraban, M. Tasinkevych, M.N. Popescu, S. Sánchez, S. Dietrich, O.G. Schmidt, Soft Matter 8, 48 (2012)

    Article  ADS  Google Scholar 

  6. S. Ebbens, D.A. Gregory, G. Dunderdale, J.R. Howse, Y. Ibrahim, T.B. Liverpool, R. Golestanian, EPL 106, 58003 (2014)

    Article  ADS  Google Scholar 

  7. A. Brown, W. Poon, Soft Matter 10, 4016 (2014)

    Article  ADS  Google Scholar 

  8. X. Wang, M. In, C. Blanc, M. Nobili, A. Stocco, Soft Matter 11, 7376 (2015)

    Article  ADS  Google Scholar 

  9. R. Golestanian, T.B. Liverpool, A. Ajdari, Phys. Rev. Lett. 94, 220801 (2005)

    Article  ADS  Google Scholar 

  10. R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)

    Article  ADS  Google Scholar 

  11. G.R. Rückner, R. Kapral, Phys. Rev. Lett. 98, 150603 (2007)

    Article  Google Scholar 

  12. F. Jülicher, J. Prost, Eur. Phys. J. E 29, 27 (2009)

    Article  Google Scholar 

  13. M.N. Popescu, M. Tasinkevych, S. Dietrich, EPL 95, 28004 (2011)

    Article  ADS  Google Scholar 

  14. R. Kapral, J. Chem. Phys. 138, 202901 (2013)

    Article  Google Scholar 

  15. B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011)

    ADS  Google Scholar 

  16. S. Michelin, E. Lauga, Eur. Phys. J. E 38, 7 (2015)

    Article  Google Scholar 

  17. B. ten Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014)

    Article  ADS  Google Scholar 

  18. J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)

    Article  ADS  Google Scholar 

  19. A. Zöttl, H. Stark, J. Phys.: Condens. Matter 28, 253001 (2016)

    ADS  Google Scholar 

  20. J. de Graaf, G. Rempfer, C. Holm, IEEE Trans. NanoBiosci. 14, 272 (2015)

    Article  Google Scholar 

  21. J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  22. W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 434 (2015)

    Article  ADS  Google Scholar 

  23. J. Palacci, S. Sacanna, A.S. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)

    Article  ADS  Google Scholar 

  24. S. Das, A. Garg, A.I. Campbell, J. Howse, A. Sen, D. Velegol, R. Golestanian, S.J. Ebbens, Nat. Commun. 6, 8999 (2015)

    Article  ADS  Google Scholar 

  25. J. Simmchen, J. Katuri, W.E. Uspal, M.N. Popescu, M. Tasinkevych, S. Sánchez, Nat. Commun. 7, 10598 (2016)

    Article  ADS  Google Scholar 

  26. A. Mozaffari, N. Sharifi-Mood, J. Koplik, C. Maldarelli, Phys. Fluids 28, 053107 (2016)

    Article  ADS  Google Scholar 

  27. W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Phys. Rev. Lett. 117, 048002 (2016)

    Article  ADS  Google Scholar 

  28. A.M. Leshansky, A.A. Golovin, A. Nir, Phys. Fluids 9, 2818 (1997)

    Article  ADS  Google Scholar 

  29. A. Domínguez, P. Malgaretti, M.N. Popescu, S. Dietrich, Phys. Rev. Lett. 116, 078301 (2016)

    Article  ADS  Google Scholar 

  30. W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 6613 (2015)

    Article  ADS  Google Scholar 

  31. A.I. Campbell, S.J. Ebbens, Langmuir 29, 14066 (2013)

    Article  Google Scholar 

  32. M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011)

    Article  ADS  Google Scholar 

  33. J.F. Brady, J. Fluid Mech. 667, 216 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  34. D.G. Crowdy, J. Fluid Mech. 735, 473 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  35. C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (CRC Press, Boca Raton, 2002)

  36. Y. Ibrahim, T.B. Liverpool, EPL 111, 48008 (2015)

    Article  ADS  Google Scholar 

  37. S. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)

    Article  MathSciNet  Google Scholar 

  38. S. Michelin, E. Lauga, J. Fluid Mech. 747, 572 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  39. J.R. Blake, J. Fluid Mech. 46, 199 (1971)

    Article  ADS  Google Scholar 

  40. Y. Ibrahim, T.B. Liverpool, arXiv:1607.08757

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Popescu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popescu, M.N., Uspal, W.E., Tasinkevych, M. et al. Perils of ad hoc approximations for the activity function of chemically powered colloids. Eur. Phys. J. E 40, 42 (2017). https://doi.org/10.1140/epje/i2017-11529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11529-1

Keywords

  • Soft Matter: Colloids and Nanoparticles