Abstract.
Colloids can achieve motility by promoting at their surfaces chemical reactions in the surrounding solution. A well-studied case is that of self-phoresis, in which motility arises due to the spatial inhomogeneities in the chemical composition of the solution and the distinct interactions of the solvent molecules and of the reaction products with the colloid. For simple models of such chemically active colloids, the steady-state motion in an unbounded solution can be derived analytically in closed form. In contrast, for such chemically active particles moving in the vicinity of walls, the derivation of closed-form and physically intuitive solutions of the equations governing their dynamics turns out to be a severe challenge even for simple models. Therefore, recent studies of these phenomena have employed numerical methods as well as approximate analytical approaches based on multipolar expansions. We discuss and clarify certain conceptual aspects concerning the latter type of approach, which arise due to ad hoc truncations of the underlying so-called activity function, which describes the distribution of chemical reactions across the surface of the particle.
Graphical abstract

This is a preview of subscription content, access via your institution.
References
S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)
Y. Hong, D. Velegol, N. Chaturvedi, A. Sen, Phys. Chem. Chem. Phys. 12, 1423 (2010)
S. Ebbens, M.H. Tu, J.R. Howse, R. Golestanian, Phys. Rev. E 85, 020401 (2012)
T.C. Lee, M. Alarcón-Correa, C. Miksch, K. Hahn, J.G. Gibbs, P. Fischer, Nano Lett. 14, 2407 (2014)
L. Baraban, M. Tasinkevych, M.N. Popescu, S. Sánchez, S. Dietrich, O.G. Schmidt, Soft Matter 8, 48 (2012)
S. Ebbens, D.A. Gregory, G. Dunderdale, J.R. Howse, Y. Ibrahim, T.B. Liverpool, R. Golestanian, EPL 106, 58003 (2014)
A. Brown, W. Poon, Soft Matter 10, 4016 (2014)
X. Wang, M. In, C. Blanc, M. Nobili, A. Stocco, Soft Matter 11, 7376 (2015)
R. Golestanian, T.B. Liverpool, A. Ajdari, Phys. Rev. Lett. 94, 220801 (2005)
R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)
G.R. Rückner, R. Kapral, Phys. Rev. Lett. 98, 150603 (2007)
F. Jülicher, J. Prost, Eur. Phys. J. E 29, 27 (2009)
M.N. Popescu, M. Tasinkevych, S. Dietrich, EPL 95, 28004 (2011)
R. Kapral, J. Chem. Phys. 138, 202901 (2013)
B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011)
S. Michelin, E. Lauga, Eur. Phys. J. E 38, 7 (2015)
B. ten Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014)
J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)
A. Zöttl, H. Stark, J. Phys.: Condens. Matter 28, 253001 (2016)
J. de Graaf, G. Rempfer, C. Holm, IEEE Trans. NanoBiosci. 14, 272 (2015)
J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)
W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 434 (2015)
J. Palacci, S. Sacanna, A.S. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)
S. Das, A. Garg, A.I. Campbell, J. Howse, A. Sen, D. Velegol, R. Golestanian, S.J. Ebbens, Nat. Commun. 6, 8999 (2015)
J. Simmchen, J. Katuri, W.E. Uspal, M.N. Popescu, M. Tasinkevych, S. Sánchez, Nat. Commun. 7, 10598 (2016)
A. Mozaffari, N. Sharifi-Mood, J. Koplik, C. Maldarelli, Phys. Fluids 28, 053107 (2016)
W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Phys. Rev. Lett. 117, 048002 (2016)
A.M. Leshansky, A.A. Golovin, A. Nir, Phys. Fluids 9, 2818 (1997)
A. Domínguez, P. Malgaretti, M.N. Popescu, S. Dietrich, Phys. Rev. Lett. 116, 078301 (2016)
W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 6613 (2015)
A.I. Campbell, S.J. Ebbens, Langmuir 29, 14066 (2013)
M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011)
J.F. Brady, J. Fluid Mech. 667, 216 (2011)
D.G. Crowdy, J. Fluid Mech. 735, 473 (2013)
C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (CRC Press, Boca Raton, 2002)
Y. Ibrahim, T.B. Liverpool, EPL 111, 48008 (2015)
S. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)
S. Michelin, E. Lauga, J. Fluid Mech. 747, 572 (2014)
J.R. Blake, J. Fluid Mech. 46, 199 (1971)
Y. Ibrahim, T.B. Liverpool, arXiv:1607.08757
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Popescu, M.N., Uspal, W.E., Tasinkevych, M. et al. Perils of ad hoc approximations for the activity function of chemically powered colloids. Eur. Phys. J. E 40, 42 (2017). https://doi.org/10.1140/epje/i2017-11529-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/i2017-11529-1
Keywords
- Soft Matter: Colloids and Nanoparticles