Chaperone-driven polymer translocation through nanopore: Spatial distribution and binding energy

Regular Article

Abstract.

Chaperones are binding proteins working as a driving force in biopolymer translocation. They bind to the biopolymer near the pore and prevent its backsliding. Chaperones may have different spatial distributions. Recently, we showed the importance of their spatial distribution in translocation and its effects on the sequence dependency of the translocation time. Here we focus on homopolymers and exponential distribution. Because of the exponential distribution of chaperones, the energy dependency of the translocation time will change. Here we find a minimum in translocation time versus binding effective energy (EBE) curve. The same trend can be seen in the scaling exponent of time versus polymer length, \( \beta\) (\(T\sim\beta\)), when plotted against EBE. Interestingly in some special cases, e.g. chaperones of size \(\lambda =6\) and with an exponential distribution rate of \( \alpha =5\), the minimum even reaches to an amount of less than 1 (\(\beta <1\)). We explain the possibility of this rare result. Moreover, based on a theoretical discussion we show that, by taking into account the velocity dependency of the translocation on polymer length, one can truly predict the value of this minimum.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    A. Meller, J. Phys.: Condens. Matter 15, R581 (2003)ADSGoogle Scholar
  2. 2.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Publishing, New York, 2002)Google Scholar
  3. 3.
    M. Muthukumar, Annu. Rev. Biophys. Biomol. Struct. 36, 435 (2007)CrossRefGoogle Scholar
  4. 4.
    T.A. Rapoport, Nature 450, 663 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    E.D. Marzio, J.J. Kasianowicz, J. Chem. Phys. 119, 6378 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    J.J. Nakane, M. Akeson, A. Marziali, J. Phys.: Condens. Matter 15, R1365 (2003)ADSGoogle Scholar
  7. 7.
    D. Branton, D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M.D. Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J.A. Schloss, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M.D. Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krsticand, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J.A. Schloss, Nat. Biotechnol. 20, 1146 (2008)CrossRefGoogle Scholar
  8. 8.
    J.A. Cohen, A. Chaudhuri, R. Golestanian, Phys. Rev. X 2, 2160 (2012)Google Scholar
  9. 9.
    P. Fanzio, C. Manneschi, E. Angeli, V. Mussi, G. Firpo, L. Ceseracciu, L. Repetto, U. Valbusa, Sci. Rep. 2, 791 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    S. Carson, M. Wanunu, Nanotechnology 26, 074004 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    F. Liang, P. Zhang, Sci. Bull. 60, 296 (2015)CrossRefGoogle Scholar
  12. 12.
    S.M. Bezrukov, I. Vodyanoy, V.A. Parsegian, Nature 370, 279 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    D. Panja, G.T. Barkema, A.B. Kolomeisky, J. Phys.: Condens. Matter 25, 413101 (2013)Google Scholar
  15. 15.
    L.-Z. Sun, M.-B. Luo, J. Phys.: Condens. Matter 26, 415101 (2014)Google Scholar
  16. 16.
    V.V. Palyulin, T. Ala-Nissila, R. Metzler, Soft Matter 10, 9016 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    D. Tomkiewicz, N. Nouwen, A.J.M. Driessen, Fed. Eur. Biochem. Soc. Lett. 581, 2820 (2007)CrossRefGoogle Scholar
  18. 18.
    S.F. Simon, C.S. Peskin, G.F. Oster, Proc. Natl. Acad. Sci. U.S.A. 89, 3770 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    W. Liebermeister, T.A. Rapoport, R. Heinrich, J. Mol. Biol. 305, 643 (2001)CrossRefGoogle Scholar
  20. 20.
    T.C. Elston, Biophys. J. 82, 1239 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    R. Zandi, D. Reguera, J. Rudnick, W.M. Gelbart, Proc. Natl. Acad. Sci. U.S.A. 100, 8649 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    C. Hepp, B. Maier, Proc. Natl. Acad. Sci. U.S.A. 113, 12467 (2016)CrossRefGoogle Scholar
  23. 23.
    T. Ambjrnsson, R. Metzler, Phys. Biol. 1, 77 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    R.H. Abdolvahab, F. Roshani, A. Nourmohammad, M. Sahimi, M.R.R. Tabar, J. Chem. Phys. 129, 235102 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    R.H. Abdolvahab, M.R. Ejtehadi, R. Metzler, Phys. Rev. E 83, 011902 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    R.H. Abdolvahab, M.R. Ejtehadi, R. Metzler, J. Chem. Phys. 135, 5102 (2011)CrossRefGoogle Scholar
  27. 27.
    W. Yu, K. Luo, J. Am. Chem. Soc. 133, 13565 (2011)CrossRefGoogle Scholar
  28. 28.
    W. Yu, K. Luo, Phys. Rev. E 90, 042708 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Q.-B.R. Wei-Ping Cao, M.-B. Luo, Phys. Rev. E 92, 012603 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    P.M. Suhonen, R.P. Linna, Phys. Rev. E 93, 012406 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    R.H. Abdolvahab, Phys. Lett. A 380, 1023 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M.-J.C.-Z. Qing-Bao, RenSong-Hua, S.-P. Cao, Colloid Polym. Sci. 294, 1351 (2016)CrossRefGoogle Scholar
  33. 33.
    F. Besse, A. Ephrussi, Nat. Rev. Mol. Cell Biol. 9, 971 (2008)CrossRefGoogle Scholar
  34. 34.
    W. Wang, E. van Niekerk, D.E. Willis, J.L. Twiss, Dev. Neurobiol. 67, 1166 (2007)CrossRefGoogle Scholar
  35. 35.
    L.-Z. Sun, W.-P. Cao, M.-B. Luo, Phys. Rev. E 84, 041912 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    M.-B. Luo, W.-P. Cao, Phys. Rev. E 86, 031914 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    M. Muthukumar, J. Chem. Phys. 111, 10371 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd edition, Vol. 13 of Synergetics (Springer, New York, 2002)Google Scholar
  39. 39.
    S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge UK, 2001)Google Scholar
  40. 40.
    T. Ambjrnsson, M.A. Lomholt, R. Metzler, J. Phys.: Condens. Matter 17, S3945 (2005)ADSGoogle Scholar
  41. 41.
    K.C. Martin, A. Ephrussi, Cell 136, 719 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Physics DepartmentIran University of Science and Technology (IUST)TehranIran

Personalised recommendations