Abstract.
Chaperones are binding proteins working as a driving force in biopolymer translocation. They bind to the biopolymer near the pore and prevent its backsliding. Chaperones may have different spatial distributions. Recently, we showed the importance of their spatial distribution in translocation and its effects on the sequence dependency of the translocation time. Here we focus on homopolymers and exponential distribution. Because of the exponential distribution of chaperones, the energy dependency of the translocation time will change. Here we find a minimum in translocation time versus binding effective energy (EBE) curve. The same trend can be seen in the scaling exponent of time versus polymer length, \( \beta\) (\(T\sim\beta\)), when plotted against EBE. Interestingly in some special cases, e.g. chaperones of size \(\lambda =6\) and with an exponential distribution rate of \( \alpha =5\), the minimum even reaches to an amount of less than 1 (\(\beta <1\)). We explain the possibility of this rare result. Moreover, based on a theoretical discussion we show that, by taking into account the velocity dependency of the translocation on polymer length, one can truly predict the value of this minimum.
Graphical abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
A. Meller, J. Phys.: Condens. Matter 15, R581 (2003)
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Publishing, New York, 2002)
M. Muthukumar, Annu. Rev. Biophys. Biomol. Struct. 36, 435 (2007)
T.A. Rapoport, Nature 450, 663 (2007)
E.D. Marzio, J.J. Kasianowicz, J. Chem. Phys. 119, 6378 (2003)
J.J. Nakane, M. Akeson, A. Marziali, J. Phys.: Condens. Matter 15, R1365 (2003)
D. Branton, D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M.D. Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krstic, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J.A. Schloss, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M.D. Ventra, S. Garaj, A. Hibbs, X. Huang, S.B. Jovanovich, P.S. Krsticand, S. Lindsay, X.S. Ling, C.H. Mastrangelo, A. Meller, J.S. Oliver, Y.V. Pershin, J.M. Ramsey, R. Riehn, G.V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin, J.A. Schloss, Nat. Biotechnol. 20, 1146 (2008)
J.A. Cohen, A. Chaudhuri, R. Golestanian, Phys. Rev. X 2, 2160 (2012)
P. Fanzio, C. Manneschi, E. Angeli, V. Mussi, G. Firpo, L. Ceseracciu, L. Repetto, U. Valbusa, Sci. Rep. 2, 791 (2012)
S. Carson, M. Wanunu, Nanotechnology 26, 074004 (2015)
F. Liang, P. Zhang, Sci. Bull. 60, 296 (2015)
S.M. Bezrukov, I. Vodyanoy, V.A. Parsegian, Nature 370, 279 (1994)
J.J. Kasianowicz, E. Brandin, D. Branton, D.W. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996)
D. Panja, G.T. Barkema, A.B. Kolomeisky, J. Phys.: Condens. Matter 25, 413101 (2013)
L.-Z. Sun, M.-B. Luo, J. Phys.: Condens. Matter 26, 415101 (2014)
V.V. Palyulin, T. Ala-Nissila, R. Metzler, Soft Matter 10, 9016 (2014)
D. Tomkiewicz, N. Nouwen, A.J.M. Driessen, Fed. Eur. Biochem. Soc. Lett. 581, 2820 (2007)
S.F. Simon, C.S. Peskin, G.F. Oster, Proc. Natl. Acad. Sci. U.S.A. 89, 3770 (1992)
W. Liebermeister, T.A. Rapoport, R. Heinrich, J. Mol. Biol. 305, 643 (2001)
T.C. Elston, Biophys. J. 82, 1239 (2002)
R. Zandi, D. Reguera, J. Rudnick, W.M. Gelbart, Proc. Natl. Acad. Sci. U.S.A. 100, 8649 (2003)
C. Hepp, B. Maier, Proc. Natl. Acad. Sci. U.S.A. 113, 12467 (2016)
T. Ambjrnsson, R. Metzler, Phys. Biol. 1, 77 (2004)
R.H. Abdolvahab, F. Roshani, A. Nourmohammad, M. Sahimi, M.R.R. Tabar, J. Chem. Phys. 129, 235102 (2008)
R.H. Abdolvahab, M.R. Ejtehadi, R. Metzler, Phys. Rev. E 83, 011902 (2011)
R.H. Abdolvahab, M.R. Ejtehadi, R. Metzler, J. Chem. Phys. 135, 5102 (2011)
W. Yu, K. Luo, J. Am. Chem. Soc. 133, 13565 (2011)
W. Yu, K. Luo, Phys. Rev. E 90, 042708 (2014)
Q.-B.R. Wei-Ping Cao, M.-B. Luo, Phys. Rev. E 92, 012603 (2015)
P.M. Suhonen, R.P. Linna, Phys. Rev. E 93, 012406 (2016)
R.H. Abdolvahab, Phys. Lett. A 380, 1023 (2016)
M.-J.C.-Z. Qing-Bao, RenSong-Hua, S.-P. Cao, Colloid Polym. Sci. 294, 1351 (2016)
F. Besse, A. Ephrussi, Nat. Rev. Mol. Cell Biol. 9, 971 (2008)
W. Wang, E. van Niekerk, D.E. Willis, J.L. Twiss, Dev. Neurobiol. 67, 1166 (2007)
L.-Z. Sun, W.-P. Cao, M.-B. Luo, Phys. Rev. E 84, 041912 (2011)
M.-B. Luo, W.-P. Cao, Phys. Rev. E 86, 031914 (2012)
M. Muthukumar, J. Chem. Phys. 111, 10371 (1999)
C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd edition, Vol. 13 of Synergetics (Springer, New York, 2002)
S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge UK, 2001)
T. Ambjrnsson, M.A. Lomholt, R. Metzler, J. Phys.: Condens. Matter 17, S3945 (2005)
K.C. Martin, A. Ephrussi, Cell 136, 719 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Abdolvahab, R.H. Chaperone-driven polymer translocation through nanopore: Spatial distribution and binding energy. Eur. Phys. J. E 40, 41 (2017). https://doi.org/10.1140/epje/i2017-11528-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/i2017-11528-2