Soret coefficient of the n-dodecane-n-hexane binary mixture under high pressure

  • Ion Lizarraga
  • Fabrizio Croccolo
  • Henri Bataller
  • M. Mounir Bou-Ali
Regular Article
Part of the following topical collections:
  1. Non-isothermal transport in complex fluids


In the present work, the Soret coefficient has been determined at high pressure for a binary hydrocarbon mixture by combining the thermogravitational column and the dynamic near-field imaging techniques. The analyzed mixture is an iso-massic n -dodecane-n -hexane mixture at 298.15K. The molecular diffusion coefficient has been measured up to 20MPa by means of the dynamic analysis of the light scattered by non-equilibrium concentration fluctuations. With a cylindrical thermogravitational column the thermodiffusion coefficient was determined from 0.1MPa to 10MPa. Density, as well as, mass expansion and thermal expansion have been measured with a high pressure densimeter. Dynamic viscosity at up to 20MPa has been determined with a high pressure viscometer. This work shows the decreasing tendency of both the molecular diffusion and the thermodiffusion coefficient with increasing pressure.

Graphical abstract


Topical Issue: Non-isothermal transport in complex fluids 


  1. 1.
    D. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover Publications, 1984)Google Scholar
  2. 2.
    G. Galliero, F. Montel, Understanding compositional grading in petroleum reservoirs thanks to molecular simulations, in 2009 SPE EUROPEC/EAGE Annual Conference and Exhibition, Amsterdam, 2009, SPE 121902 paper (Society of Petroleum Engineers, 2009) DOI:10.2118/121902-MS
  3. 3.
    C. Lira-Galeana, A. Firoozabadi, J.M. Prausnitz, Fluid Phase Equilib. 102, 143 (1994)CrossRefGoogle Scholar
  4. 4.
    L. Høier, C.H. Whitson, SPE Reserv. Eval. Eng. 4, 36 (2001)CrossRefGoogle Scholar
  5. 5.
    F. Montel, J. Bickert, A. Lagisquet, G. Galliéro, J. Pet. Sci. Eng. 58, 391 (2007)CrossRefGoogle Scholar
  6. 6.
    Y. Yusako, I. Tsuneo, Numerical investigation of pressure transient responses of a well penetrating a deep geothermal reservoir at super-critical conditions, in Twenty-Firts Whorshop on Geothermal Reservoir Engineering (Stanford University, 1996) pp. 107--112Google Scholar
  7. 7.
    S. Palle, R.S. Miller, Combust. Flame 151, 581 (2007)CrossRefGoogle Scholar
  8. 8.
    K.G. Harstad, J. Bellan, J. Chem. Phys. 120, 5664 (2004)CrossRefADSGoogle Scholar
  9. 9.
    P. Urteaga, M.M. Bou-Ali, D. Alonso De Mezquia, J. Santamaría, C. Santamaría, J.A. Madariaga, H. Bataller, Rev. Sci. Instrum. 83, 074903 (2012)CrossRefADSGoogle Scholar
  10. 10.
    I. Lizarraga, C. Giraudet, F. Croccolo, M.M. Bou-Ali, H. Bataller, Micrograv. Sci. Technol. 28, 545 (2016)CrossRefADSGoogle Scholar
  11. 11.
    C. Giraudet, H. Bataller, F. Croccolo, Eur. Phys. J. E 37, 107 (2014)CrossRefGoogle Scholar
  12. 12.
    W.M. Rutherford, J.G. Roof, J. Phys. Chem. 53, 12506 (1959)Google Scholar
  13. 13.
    D. Alonso de Mezquia, Z. Wang, E. Lapeira, M. Klein, S. Wiegand, M.M. Bou-Ali, Eur. Phys. J. E 37, 106 (2014)CrossRefGoogle Scholar
  14. 14.
    K. Shukla, A. Firoozabadi, Ind. Eng. Chem. Res. 37, 3331 (1998)CrossRefGoogle Scholar
  15. 15.
    K. Clusius, G. Dickel, Naturwissenschaften 26, 546 (1938)CrossRefADSGoogle Scholar
  16. 16.
    W.H. Furry, R.C. Jones, L. Onsager, Phys. Rev. 55, 1083 (1939)CrossRefADSGoogle Scholar
  17. 17.
    J. Valencia, M.M. Bou-Ali, O. Ecenarro, J.A. Madariaga, C.M. Santamaría, Therm. Nonequilib. Phenom. Fluid Mix. 584, 233 (2002)CrossRefADSGoogle Scholar
  18. 18.
    J.J. Valencia, M.M. Bou-Ali, J.K. Platten, O. Ecenarro, J.M. Madariaga, C.M. Santamaría, J. Non-Equilib. Thermodyn. 32, 299 (2007)CrossRefADSGoogle Scholar
  19. 19.
    J.A. Madariaga, C. Santamaría, H. Barrutia, M.M. Bou-Ali, O. Ecenarro, J.J. Valencia, C.R. Mec. 339, 292 (2011)CrossRefADSGoogle Scholar
  20. 20.
    M.M. Bou-Ali, O. Ecenarro, J.A. Madariaga, C.M. Santamaría, J.J. Valencia, J. Phys.: Condens. Matter 10, 3321 (1999)ADSGoogle Scholar
  21. 21.
    J.M. Ortiz de Zárate, J.V. Sengers, Hydrodynamic Flucutations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006)Google Scholar
  22. 22.
    D. Brogioli, F. Croccolo, A. Vailati, Phys. Rev. E 94, 022142 (2016)CrossRefADSGoogle Scholar
  23. 23.
    F. Croccolo, H. Bataller, F. Scheffold, J. Chem. Phys. 137, 234202 (2012)CrossRefADSGoogle Scholar
  24. 24.
    F. Croccolo, F. Scheffold, H. Bataller, C.R. Mec. 341, 378 (2013)CrossRefADSGoogle Scholar
  25. 25.
    B.J. Berne, R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover Publications, 2000)Google Scholar
  26. 26.
    M. Giglio, M. Carpineti, A. Vailati, Phys. Rev. 85, 1416 (2000)ADSGoogle Scholar
  27. 27.
    F. Ferri, D. Magatti, D. Pescini, M.A. Potenza, M. Giglio, Phys. Rev. E 70, 41405 (2004)CrossRefADSGoogle Scholar
  28. 28.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Appl. Opt. 45, 2166 (2006)CrossRefADSGoogle Scholar
  29. 29.
    F. Scheffold, R. Cerbino, Curr. Opin. Colloid Interface Sci. 12, 50 (2007)CrossRefGoogle Scholar
  30. 30.
    A. Cerbino, R. Vailati, Curr. Opin. Colloid Interface Sci. 14, 416 (2009)CrossRefGoogle Scholar
  31. 31.
    F. Giavazzi, R. Cerbino, J. Opt. 16, 83001 (2014)CrossRefGoogle Scholar
  32. 32.
    S.P. Trainoff, D.S. Cannell, Phys. Fluids 14, 1340 (2002)CrossRefADSGoogle Scholar
  33. 33.
    D. Croccolo, F. Brogioli, Appl. Opt. 50, 3419 (2011)CrossRefADSGoogle Scholar
  34. 34.
    D. Brogioli, A. Vailati, M. Giglio, Europhys. Lett. 63, 220 (2003)CrossRefADSGoogle Scholar
  35. 35.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Phys. Rev. E 76, 41112 (2007)CrossRefADSGoogle Scholar
  36. 36.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Ann. N.Y. Acad. Sci. 1077, 365 (2006)CrossRefADSGoogle Scholar
  37. 37.
    R. Cerbino, V. Trappe, Phys. Rev. Lett. 100, 188102 (2008)CrossRefADSGoogle Scholar
  38. 38.
    F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, R. Cerbino, Phys. Rev. E 80, 031403 (2009)CrossRefADSGoogle Scholar
  39. 39.
    A. Oprisan, A.L. Payne, Opt. Commun. 290, 100 (2013)CrossRefADSGoogle Scholar
  40. 40.
    A. Oprisan, S. Oprisan, A. Teklu, Appl. Opt. 49, 86 (2010)CrossRefADSGoogle Scholar
  41. 41.
    G. Cerchiari, F. Croccolo, F. Cardinaux, F. Scheffold, Rev. Sci. Intrum. 83, 106101 (2012)CrossRefADSGoogle Scholar
  42. 42.
    F. Croccolo, C. Giraudet, H. Bataller, R. Cerbino, A. Vailati, Micrograv. Sci. Technol. 28, 467 (2016)CrossRefADSGoogle Scholar
  43. 43.
    D.-Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976)CrossRefGoogle Scholar
  44. 44.
    J.-N. Jaubert, R. Privat, F. Mutelet, AlChE J. 56, 3225 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ion Lizarraga
    • 1
  • Fabrizio Croccolo
    • 2
    • 3
  • Henri Bataller
    • 2
  • M. Mounir Bou-Ali
    • 1
  1. 1.MGEP Mondragon Goi Eskola Politeknikoa, Mechanical and Industrial Manufacturing DepartmentMondragonSpain
  2. 2.Univ. Pau & Pays Adour, CNRS, TOTAL, LFCR-IPRA, UMR5150AngletFrance
  3. 3.CNES Centre National d’Études SpatialesParis Cedex 01France

Personalised recommendations