Magnetoelastic instability in soft thin films

  • M. Poty
  • F. Weyer
  • G. Grosjean
  • G. Lumay
  • N. Vandewalle
Regular Article


Ferromagnetic particles are incorporated in a thin soft elastic matrix. A lamella, made of this smart material, is studied experimentally and modeled. We show herein that thin films can be actuated using an external magnetic field applied through the system. The system is found to be switchable since subcritical pitchfork bifurcation is discovered in the beam shape when the magnetic field orientation is modified. Strong magnetoelastic effects can be obtained depending on both field strength and orientation. Our results provide versatile ways to contribute to many applications from the microfabrication of actuators to soft robotics. As an example, we created a small synthetic octopus piloted by an external magnetic field.

Graphical abstract


Flowing matter: Nonlinear Physics 


  1. 1.
    T.T. Wu, Int. J. Solids Structures 2, 1 (1966)CrossRefGoogle Scholar
  2. 2.
    D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett. 76, 2868 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    B. Florijn, C. Coulais, M. van Hecke, Phys. Rev. Lett. 113, 175503 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Varga, G. Filipcsei, M. Zrinyi, Polymer 47, 227 (2006)CrossRefGoogle Scholar
  5. 5.
    E. Diller, J. Zhuang, G.Z. Lum, M.R. Edwards, M. Sitti, Appl. Phys. Lett. 104, 174101 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    R. Mishra, M.D. Dickey, O. Velev, J.B. Tracy, Nanoscale 8, 1309 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    G. Lumay, N. Vandewalle, Phys. Rev. E 78, 061302 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    N. Adami, H. Caps, EPL 106, 46001 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    D. Vella, E. du Pontavice, C.L. Hall, A. Goriely, Proc. R. Soc. London A 470, 2162 (2014)Google Scholar
  10. 10.
    I. Stankovic, M. Dasica, R. Messina, Soft Matter 12, 3056 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    R. Messina, L. Spiteri, Eur. Phys. J. E 39, 81 (2016)CrossRefGoogle Scholar
  12. 12.
    N. Vandewalle, S. Dorbolo, New J. Phys. 16, 013050 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    P.W. Anderson, Phys. Today 41, 9 (1988)ADSGoogle Scholar
  14. 14.
    W.M. Haynes, Handbook of Chemistry and Physics, 93th edition (CRC Press, 2012)Google Scholar
  15. 15.
    K. Singh, C.R. Tipton, E. Han, T. Mullin, Proc. R. Soc. A 469, 20130111 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    J. den Toonder, F. Bos, D. Broer, L. Filippini, M. Gillies, J. de Goede, T. Mol, M. Reijme, W. Talen, H. Wilderbeek, V. Khatavkarb, P. Anderson, Lab Chip 8, 533 (2008)CrossRefGoogle Scholar
  17. 17.
    R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 108, 20400 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    E. Diller, N. Zhang, M. Sitti, J. Micro-Bio Robot 8, 121 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • M. Poty
    • 1
  • F. Weyer
    • 1
  • G. Grosjean
    • 1
  • G. Lumay
    • 1
  • N. Vandewalle
    • 1
  1. 1.GRASP, Institute of Physics B5aUniversity of LiègeLiègeBelgium

Personalised recommendations