Rotational motion of dimers of Janus particles

Regular Article

Abstract.

We theoretically study the motion of a rigid dimer of self-propelling Janus particles. In a simple kinetic approach without hydrodynamic interactions, the dimer moves on a helical trajectory and, at the same time, it rotates about its center of mass. Inclusion of the effects of mutual advection using superposition approximation does not alter the qualitative features of the motion but merely changes the parameters of the trajectory and the angular velocity.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    M.E. Cates, Rep. Prog. Phys. 75, 042601 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 862 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    S. Sundararajan, P.E. Lammert, A.W. Zudans, V.H. Crespi, A. Sen, Nano Lett. 8, 1271 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    R. Laocharoensuk, J. Burdick, J. Wang, ACS Nano 2, 1069 (2008)CrossRefGoogle Scholar
  7. 7.
    W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)CrossRefGoogle Scholar
  8. 8.
    W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk, A. Sen, J. Am. Chem. Soc. 128, 14881 (2006)CrossRefGoogle Scholar
  9. 9.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    R. Golestanian, T.B. Liverpool, A. Ajdari, Phys. Rev. Lett. 94, 220801 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    H.-R. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 105, 268302 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    A.P. Bergulla, F. Cichos, Faraday Discuss. 184, 381 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    L. Baraban, R. Streubel, D. Makarov, L. Han, D. Karnaushenko, O.G. Schmidt, G. Cuniberti, ACS Nano 7, 1360 (2013)CrossRefGoogle Scholar
  14. 14.
    F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A. Wittmeier, A.L. Holterhoff, J. Johnson, J.G. Gibbs, Langmuir 31, 10402 (2015)CrossRefGoogle Scholar
  16. 16.
    N.S.-Mood, A. Mozaffari, U.M.C.-Figueroa, J. Fluid Mech. 798, 910 (2016)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    J.R. Blake, J. Fluid Mech. 46, 199 (1971)ADSCrossRefGoogle Scholar
  19. 19.
    T. Ishikawa, M.P. Simmonds, T.J. Pedley, J. Fluid Mech. 568, 119 (2006)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    I. Llopis, I. Pagonabarraga, J. Non-Newton. Fluid Mech. 165, 946 (2010)CrossRefGoogle Scholar
  21. 21.
    A. Zöttl, H. Stark, Phys. Rev. Lett. 112, 118101 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    T. Bickel, A. Majee, A. Würger, Phys. Rev. E 88, 012301 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    A.I. Campbell, S.J. Ebbens, Langmuir 29, 14066 (2013)CrossRefGoogle Scholar
  24. 24.
    R. Schachoff, M. Selmke, A. Bregulla, F. Cichos, D. Rings, D. Chakraborty, K. Kroy, K. Günther, A. Henning-Knechtel, E. Sperling, M. Mertig, diffusion-fundamentals.org 23, 1 (2015)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Max-Planck-Institut für Intelligente SystemeStuttgartGermany
  2. 2.IV. Institut für Theoretische PhysikUniversität StuttgartStuttgartGermany

Personalised recommendations