Onset and non-linear regimes of Soret-induced convection in binary mixtures heated from above

Regular Article
Part of the following topical collections:
  1. Non-isothermal transport in complex fluids

Abstract.

The paper deals with the investigation of the onset and non-linear regimes of convection of liquid binary mixtures with negative Soret effect heated from above. The linear stability of a convectionless state in a horizontal layer is studied by the numerical solution of the linearized problem on the temporal evolution of small perturbations of the unsteady base state. Non-linear regimes of convection are investigated by the numerical solution of the non-linear unsteady equations for a horizontally elongated rectangular cavity. The calculations are performed for water-ethanol and water-isopropanol liquid mixtures and for colloidal suspensions. The dependences of the instability onset time and wave number of the most dangerous perturbations on the solutal Rayleigh number (gravity level) obtained by a linear stability analysis and non-linear calculations are found to be in a very good agreement. A favorable comparison with the existing experimental and numerical data is presented.

Graphical abstract

Keywords

Topical Issue: Non-isothermal transport in complex fluids 

References

  1. 1.
    D.T.J. Hurle, E. Jakeman, J. Fluid Mech. 47, 667 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    G. Zimmermann, U. Müller, Int. J. Heat Mass Transfer 35, 2245 (1992)CrossRefGoogle Scholar
  3. 3.
    D. Melnikov, A. Mialdun, V. Shevtsova, J. Non-equilib. Thermodyn. 32, 259 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    J. Colombani, H. Dez, J. Bert, J. Dupuy-Philon, Phys. Rev. E 58, 3202 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    D.A. Nield, J. Fluid Mech. 29, 545 (1967)ADSCrossRefGoogle Scholar
  6. 6.
    D.T.J. Hurle, E. Jakeman, Phys. Fluids 12, 2704 (1969)ADSCrossRefGoogle Scholar
  7. 7.
    J.C. Chen, G.P. Neitzel, D.F. Jankowski, Phys. Fluids 28, 749 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    C.K. Choi, J.H. Park, H.K. Park, H.J. Cho, T.J. Chung, M.C. Kim, Int. J. Therm. Sci. 43, 817 (2004)CrossRefGoogle Scholar
  9. 9.
    M.C. Kim, S. Kim, B.J. Chung, C.K. Choi, Int. Commun. Heat Mass Transfer 30, 225 (2003)CrossRefGoogle Scholar
  10. 10.
    D. Lyubimov, T. Lyubimova, S. Amiroudine, D. Beysens, Eur. Phys. J. ST 192, 129 (2013)CrossRefGoogle Scholar
  11. 11.
    B.S. Maryshev, T.P. Lyubimova, Eur. Phys. J. E 39, 66 (2016)CrossRefGoogle Scholar
  12. 12.
    B.S. Maryshev, T.P. Lyubimova, D.V. Lyubimov, Trans. Porous Media 111, 239 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Selim, D.A.S. Rees, J. Porous Media 10, 1 (2007)CrossRefGoogle Scholar
  14. 14.
    M.I. Shliomis, M. Souhar, Europhys. Lett. 49, 55 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    M.C. Kim, C.K. Choi, J.-K. Yeo, Phys. Fluids 19, 084103 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    K.-K. Tan, T. Sam, H. Jamaludin, Int. J. Heat Mass Transfer 46, 2857 (2003)CrossRefGoogle Scholar
  17. 17.
    J.-P. Caltagirone, Quart J. Mech. Appl. Math. 33, 47 (1980)CrossRefGoogle Scholar
  18. 18.
    J.P. Ennis-King, L. Paterson, SPE J. 10, 349 (2005)CrossRefGoogle Scholar
  19. 19.
    A. Riaz, M. Hesse, H.A. Tchelepi, F.M. Orr, J. Fluid Mech. 548, 87 (2006)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    D.A.S. Rees, A. Selim, J.P. Ennis-King, The instability of unsteady boundary layers in porous media. Emerging Topics in Heat and Mass Transfer in Porous Media, edited by P. Vadasz (Springer, Berlin, 2008) pp. 85--110Google Scholar
  21. 21.
    R. Cerbino, S. Mazzoni, A. Vailati, M. Giglio, Phys. Rev. Lett. 94, 064501 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    V.M. Shevtsova, D.E. Melnikov, J.C. Legros, Phys. Rev. E 73, 047302 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    A. Mialdun, V.M. Shevtsova, Int. J. Heat Mass Transfer 51, 3164 (2008)CrossRefGoogle Scholar
  24. 24.
    A. Thom, C.J. Apelt, Field computations in engineering and physics (Van Nostrand, London, 1961)Google Scholar
  25. 25.
    S. Mazzoni, V. Shevtsova, A. Mialdun, D. Melnikov, Yu. Gaponenko, T. Lyubimova, M.Z. Saghir, Europhys. News 41, 14 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    V. Shevtsova, Y.A. Gaponenko, V. Sechenyh, D.E. Melnikov, T. Lyubimova, A. Mialdun, J. Fluid Mech. 767, 290 (2015)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    I.I. Ryzhkov, Thermal diffusion in mixtures: equations, symmetries and solutions and their stability (Institute of Computational Modelling SB RAS, Krasnoyarsk, 2012) p. 215Google Scholar
  28. 28.
    F. Giavazzi, A. Vailati, Phys. Rev. E 80, 015303 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Continuous Media Mechanics UB RASPermRussia
  2. 2.Perm State UniversityPermRussia
  3. 3.MRC, CP-165/62Université Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations