Formation of surface nanodroplets of viscous liquids by solvent exchange

Tips and Tricks

Abstract.

Surface nanodroplets are essential units for many compartmentalised processes from catalysis, liquid-liquid reactions, crystallization, wetting and more. Current techniques for producing submicron droplets are mainly based on top-down approaches, which are increasingly limited as scale reduces. Herein, solvent exchange is demonstrated as a simple solution-based approach for the formation of surface nanodroplets with intermediate and extremely high viscosity (1 000 000 cSt). By solvent exchange, the viscous droplet liquid dissolves in a good solvent that is then displaced by a poor solvent to yield surface droplets for the oversaturaion pulse at the mixing front. Within controlled flow conditions, the geometry of droplets of low and intermediate viscosity liquids can be tailored on the nano and microscale by controlling the flow rate. Meanwhile for extremely viscous liquids, the droplet size is shown to be dependent on the liquid temperature. This work demonstrates that solvent exchange offers a versatile tool for the formation of droplets with a wide range of viscosity.

Graphical abstract

Keywords

Tips and Tricks 

Supplementary material

10189_2017_384_MOESM1_ESM.pdf (153 kb)
Supplementary material

References

  1. 1.
    Jonathan Shemesh, Tom Ben Arye, Jonathan Avesar, Joo H. Kang, Amir Fine, Michael Super, Amit Meller, Donald E. Ingber, Shulamit Levenberg, Proc. Natl. Acad. Sci. U.S.A. 111, 11293 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Hengquan Yang, Luman Fu, Lijuan Wei, Jifen Liang, Bernard P. Binks, J. Am. Chem. Soc. 137, 1362 (2015)CrossRefGoogle Scholar
  3. 3.
    Christopher A. Strulson, Rosalynn C. Molden, Christine D. Keating, Philip C. Bevilacqua, Nat. Chem. 4, 941 (2012)CrossRefGoogle Scholar
  4. 4.
    Jack W. Szostak, David P. Bartel, P. Luigi Luisi, Nature 409, 387 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    D. Lohse, X. Zhang, Rev. Mod. Phys. 87, 981 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Ying Zhu, Yun-Xia Zhang, Wen-Wen Liu, Yan Ma, Qun Fang, Bo Yao, Sci. Rep. 5, 9551 (2015)CrossRefGoogle Scholar
  7. 7.
    Antonio Mendez-Vilas, Ana Belen Jodar-Reyes, Maria Luisa Gonzalez-Martin, Small 5, 1366 (2009)CrossRefGoogle Scholar
  8. 8.
    Haolan Xu, Xuehua Zhang, Adv. Colloid Interf. Sci. 224, 17 (2015)CrossRefGoogle Scholar
  9. 9.
    Huizeng Li, Qiang Yang, Guannan Li, Mingzhu Li, Shutao Wang, Yanlin Song, ACS Appl. Mater. Interfaces 7, 9060 (2015)CrossRefGoogle Scholar
  10. 10.
    Paul Delrot, Miguel A. Modestino, Franois Gallaire, Demetri Psaltis, Christophe Moser, Phys. Rev. Appl. 6, 024003 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    In Ho Choi, Joonwon Kim, Micro Nano Syst. Lett. 4, 1 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Daeshik Kang, Changhyun Pang, Sang Moon Kim, Hye Sung Cho, Hyung Sik Um, Yong Whan Choi, Kahp Y. Suh, Adv. Mater. 24, 1709 (2012)CrossRefGoogle Scholar
  13. 13.
    Dinesh Chandra, Shu Yang, Acc. Chem. Res. 43, 1080 (2010)CrossRefGoogle Scholar
  14. 14.
    Alberto Piqu, Appl. Phys. A 105, 517 (2011)CrossRefGoogle Scholar
  15. 15.
    D. Beysens, C.M. Knobler, Phys. Rev. Lett. 57, 1433 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    Aijuan Zhang, Hua Bai, Lei Li, Chem. Rev. 115, 9801 (2015)CrossRefGoogle Scholar
  17. 17.
    Xuehua Zhang, Ziyang Lu, Huanshu Tan, Lei Bao, Yinghe He, Chao Sun, Detlef Lohse, Proc. Natl. Acad. Sci. U.S.A. 112, 9253 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Ziyang Lu, Shuhua Peng, Xuehua Zhang, Langmuir 32, 1700 (2016)CrossRefGoogle Scholar
  19. 19.
    Lei Bao, Amgad R. Rezk, Leslie Y. Yeo, Xuehua Zhang, Small 11, 4850 (2015)CrossRefGoogle Scholar
  20. 20.
    Lei Bao, Zenon Werbiuk, Detlef Lohse, Xuehua Zhang, J. Phys. Chem. Lett. 7, 1055 (2016)CrossRefGoogle Scholar
  21. 21.
    Haitao Yu, Ziyang Lu, Detlef Lohse, Xuehua Zhang, Langmuir 31, 12628 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Lessel, O. Bumchen, M. Klos, H. Hhl, R. Fetzer, M. Paulus, R. Seemanna, K. Jacobsa, Surf. Interfaces 47, 557 (2014)CrossRefGoogle Scholar
  23. 23.
    Robert Sherman, Drew Hirt, Ronald Vane, J. Vac. Sci. Technol. 12, 1876 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Xuehua Zhang, Jingming Ren, Haijun Yang, Yuanhua He, Jingfung Tan, Greg G. Qiao, Soft Matter 8, 4314 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Shuhua Peng, Detlef Lohse, Xuehua Zhang, ACS Nano 9, 11916 (2015)CrossRefGoogle Scholar
  26. 26.
    Chenglong Xu, Haitao Yu, Shuhua Peng, Ziyang Lu, Lei Lei, Detlef Lohse, Xuehua Zhang, Soft Matter 13, 937 (2017)CrossRefGoogle Scholar
  27. 27.
    W.D. Ristenpart, P.M. McCalla, R.V. Roy, H.A. Stone, Phys. Rev. Lett. 97, 064501 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    W.M. Haynes (Editor), CRC Handbook of Chemistry and Physics (CRC Press, 95 edition, 2014)Google Scholar
  29. 29.
    J.P. Munch, J. Herz, S. Boileau, S. Candau, Macromolecules 14, 1370 (1981)ADSCrossRefGoogle Scholar
  30. 30.
    C.J.C. Edwards, R.F.T. Stepto, J.A. Semlyen, Polymer 23, 865 (1982)CrossRefGoogle Scholar
  31. 31.
    K.C. Pratt, W.A. Wakeham, Proc. R. Soc. A 336, 393 (1974)ADSCrossRefGoogle Scholar
  32. 32.
    Gelest, Silicone fluids property profile guide. Technical report, Gelest Inc. (2012)Google Scholar
  33. 33.
    Xuehua Zhang, Henri Lhuissier, Chao Sun, Detlef Lohse, Phys. Rev. Lett. 112, 1 (2014)CrossRefGoogle Scholar
  34. 34.
    Chon U. Chan, Longquan Chen, Manish Arora, Claus-Dieter Ohl, Phys. Rev. Lett. 114, 114505 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Haitao Yu, Shuhua Peng, Lei Lei, Ji Wei Zhang, Tamar L. Greaves, Xuehua Zhang, ACS Appl. Mater. Interfaces 8, 22679 (2016)CrossRefGoogle Scholar
  36. 36.
    Xingya Wang, Binyu Zhao, Jun Hu, Shuo Wang, Renzhong Tai, Xingyu Gao, Lijuan Zhang, Phys. Chem. Chem. Phys. 19, 1108 (2017)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Soft Matter & Interfaces Group, School of EngineeringRMIT UniversityMelbourneAustralia
  2. 2.Physics of Fluids group, Department of Science and Engineering, Mesa+ Institute, and J. M. Burgers Centre for Fluid DynamicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations